Source File
fe_generic.go
Belonging Package
crypto/internal/edwards25519/field
// Copyright (c) 2017 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.package fieldimport// uint128 holds a 128-bit number as two 64-bit limbs, for use with the// bits.Mul64 and bits.Add64 intrinsics.type uint128 struct {lo, hi uint64}// mul64 returns a * b.func (, uint64) uint128 {, := bits.Mul64(, )return uint128{, }}// addMul64 returns v + a * b.func ( uint128, , uint64) uint128 {, := bits.Mul64(, ), := bits.Add64(, .lo, 0), _ = bits.Add64(, .hi, )return uint128{, }}// shiftRightBy51 returns a >> 51. a is assumed to be at most 115 bits.func ( uint128) uint64 {return (.hi << (64 - 51)) | (.lo >> 51)}func (, , *Element) {:= .l0:= .l1:= .l2:= .l3:= .l4:= .l0:= .l1:= .l2:= .l3:= .l4// Limb multiplication works like pen-and-paper columnar multiplication, but// with 51-bit limbs instead of digits.//// a4 a3 a2 a1 a0 x// b4 b3 b2 b1 b0 =// ------------------------// a4b0 a3b0 a2b0 a1b0 a0b0 +// a4b1 a3b1 a2b1 a1b1 a0b1 +// a4b2 a3b2 a2b2 a1b2 a0b2 +// a4b3 a3b3 a2b3 a1b3 a0b3 +// a4b4 a3b4 a2b4 a1b4 a0b4 =// ----------------------------------------------// r8 r7 r6 r5 r4 r3 r2 r1 r0//// We can then use the reduction identity (a * 2²⁵⁵ + b = a * 19 + b) to// reduce the limbs that would overflow 255 bits. r5 * 2²⁵⁵ becomes 19 * r5,// r6 * 2³⁰⁶ becomes 19 * r6 * 2⁵¹, etc.//// Reduction can be carried out simultaneously to multiplication. For// example, we do not compute r5: whenever the result of a multiplication// belongs to r5, like a1b4, we multiply it by 19 and add the result to r0.//// a4b0 a3b0 a2b0 a1b0 a0b0 +// a3b1 a2b1 a1b1 a0b1 19×a4b1 +// a2b2 a1b2 a0b2 19×a4b2 19×a3b2 +// a1b3 a0b3 19×a4b3 19×a3b3 19×a2b3 +// a0b4 19×a4b4 19×a3b4 19×a2b4 19×a1b4 =// --------------------------------------// r4 r3 r2 r1 r0//// Finally we add up the columns into wide, overlapping limbs.:= * 19:= * 19:= * 19:= * 19// r0 = a0×b0 + 19×(a1×b4 + a2×b3 + a3×b2 + a4×b1):= mul64(, )= addMul64(, , )= addMul64(, , )= addMul64(, , )= addMul64(, , )// r1 = a0×b1 + a1×b0 + 19×(a2×b4 + a3×b3 + a4×b2):= mul64(, )= addMul64(, , )= addMul64(, , )= addMul64(, , )= addMul64(, , )// r2 = a0×b2 + a1×b1 + a2×b0 + 19×(a3×b4 + a4×b3):= mul64(, )= addMul64(, , )= addMul64(, , )= addMul64(, , )= addMul64(, , )// r3 = a0×b3 + a1×b2 + a2×b1 + a3×b0 + 19×a4×b4:= mul64(, )= addMul64(, , )= addMul64(, , )= addMul64(, , )= addMul64(, , )// r4 = a0×b4 + a1×b3 + a2×b2 + a3×b1 + a4×b0:= mul64(, )= addMul64(, , )= addMul64(, , )= addMul64(, , )= addMul64(, , )// After the multiplication, we need to reduce (carry) the five coefficients// to obtain a result with limbs that are at most slightly larger than 2⁵¹,// to respect the Element invariant.//// Overall, the reduction works the same as carryPropagate, except with// wider inputs: we take the carry for each coefficient by shifting it right// by 51, and add it to the limb above it. The top carry is multiplied by 19// according to the reduction identity and added to the lowest limb.//// The largest coefficient (r0) will be at most 111 bits, which guarantees// that all carries are at most 111 - 51 = 60 bits, which fits in a uint64.//// r0 = a0×b0 + 19×(a1×b4 + a2×b3 + a3×b2 + a4×b1)// r0 < 2⁵²×2⁵² + 19×(2⁵²×2⁵² + 2⁵²×2⁵² + 2⁵²×2⁵² + 2⁵²×2⁵²)// r0 < (1 + 19 × 4) × 2⁵² × 2⁵²// r0 < 2⁷ × 2⁵² × 2⁵²// r0 < 2¹¹¹//// Moreover, the top coefficient (r4) is at most 107 bits, so c4 is at most// 56 bits, and c4 * 19 is at most 61 bits, which again fits in a uint64 and// allows us to easily apply the reduction identity.//// r4 = a0×b4 + a1×b3 + a2×b2 + a3×b1 + a4×b0// r4 < 5 × 2⁵² × 2⁵²// r4 < 2¹⁰⁷//:= shiftRightBy51():= shiftRightBy51():= shiftRightBy51():= shiftRightBy51():= shiftRightBy51():= .lo&maskLow51Bits + *19:= .lo&maskLow51Bits +:= .lo&maskLow51Bits +:= .lo&maskLow51Bits +:= .lo&maskLow51Bits +// Now all coefficients fit into 64-bit registers but are still too large to// be passed around as a Element. We therefore do one last carry chain,// where the carries will be small enough to fit in the wiggle room above 2⁵¹.* = Element{, , , , }.carryPropagate()}func (, *Element) {:= .l0:= .l1:= .l2:= .l3:= .l4// Squaring works precisely like multiplication above, but thanks to its// symmetry we get to group a few terms together.//// l4 l3 l2 l1 l0 x// l4 l3 l2 l1 l0 =// ------------------------// l4l0 l3l0 l2l0 l1l0 l0l0 +// l4l1 l3l1 l2l1 l1l1 l0l1 +// l4l2 l3l2 l2l2 l1l2 l0l2 +// l4l3 l3l3 l2l3 l1l3 l0l3 +// l4l4 l3l4 l2l4 l1l4 l0l4 =// ----------------------------------------------// r8 r7 r6 r5 r4 r3 r2 r1 r0//// l4l0 l3l0 l2l0 l1l0 l0l0 +// l3l1 l2l1 l1l1 l0l1 19×l4l1 +// l2l2 l1l2 l0l2 19×l4l2 19×l3l2 +// l1l3 l0l3 19×l4l3 19×l3l3 19×l2l3 +// l0l4 19×l4l4 19×l3l4 19×l2l4 19×l1l4 =// --------------------------------------// r4 r3 r2 r1 r0//// With precomputed 2×, 19×, and 2×19× terms, we can compute each limb with// only three Mul64 and four Add64, instead of five and eight.:= * 2:= * 2:= * 38:= * 38:= * 38:= * 19:= * 19// r0 = l0×l0 + 19×(l1×l4 + l2×l3 + l3×l2 + l4×l1) = l0×l0 + 19×2×(l1×l4 + l2×l3):= mul64(, )= addMul64(, , )= addMul64(, , )// r1 = l0×l1 + l1×l0 + 19×(l2×l4 + l3×l3 + l4×l2) = 2×l0×l1 + 19×2×l2×l4 + 19×l3×l3:= mul64(, )= addMul64(, , )= addMul64(, , )// r2 = l0×l2 + l1×l1 + l2×l0 + 19×(l3×l4 + l4×l3) = 2×l0×l2 + l1×l1 + 19×2×l3×l4:= mul64(, )= addMul64(, , )= addMul64(, , )// r3 = l0×l3 + l1×l2 + l2×l1 + l3×l0 + 19×l4×l4 = 2×l0×l3 + 2×l1×l2 + 19×l4×l4:= mul64(, )= addMul64(, , )= addMul64(, , )// r4 = l0×l4 + l1×l3 + l2×l2 + l3×l1 + l4×l0 = 2×l0×l4 + 2×l1×l3 + l2×l2:= mul64(, )= addMul64(, , )= addMul64(, , ):= shiftRightBy51():= shiftRightBy51():= shiftRightBy51():= shiftRightBy51():= shiftRightBy51():= .lo&maskLow51Bits + *19:= .lo&maskLow51Bits +:= .lo&maskLow51Bits +:= .lo&maskLow51Bits +:= .lo&maskLow51Bits +* = Element{, , , , }.carryPropagate()}// carryPropagateGeneric brings the limbs below 52 bits by applying the reduction// identity (a * 2²⁵⁵ + b = a * 19 + b) to the l4 carry.func ( *Element) () *Element {:= .l0 >> 51:= .l1 >> 51:= .l2 >> 51:= .l3 >> 51:= .l4 >> 51// c4 is at most 64 - 51 = 13 bits, so c4*19 is at most 18 bits, and// the final l0 will be at most 52 bits. Similarly for the rest..l0 = .l0&maskLow51Bits + *19.l1 = .l1&maskLow51Bits +.l2 = .l2&maskLow51Bits +.l3 = .l3&maskLow51Bits +.l4 = .l4&maskLow51Bits +return}
![]() |
The pages are generated with Golds v0.6.7. (GOOS=linux GOARCH=amd64) Golds is a Go 101 project developed by Tapir Liu. PR and bug reports are welcome and can be submitted to the issue list. Please follow @Go100and1 (reachable from the left QR code) to get the latest news of Golds. |