Source File
rand.go
Belonging Package
math/rand
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package rand implements pseudo-random number generators suitable for tasks
// such as simulation, but it should not be used for security-sensitive work.
//
// Random numbers are generated by a [Source], usually wrapped in a [Rand].
// Both types should be used by a single goroutine at a time: sharing among
// multiple goroutines requires some kind of synchronization.
//
// Top-level functions, such as [Float64] and [Int],
// are safe for concurrent use by multiple goroutines.
//
// This package's outputs might be easily predictable regardless of how it's
// seeded. For random numbers suitable for security-sensitive work, see the
// crypto/rand package.
package rand
import (
_ // for go:linkname
)
// A Source represents a source of uniformly-distributed
// pseudo-random int64 values in the range [0, 1<<63).
//
// A Source is not safe for concurrent use by multiple goroutines.
type Source interface {
Int63() int64
Seed(seed int64)
}
// A Source64 is a Source that can also generate
// uniformly-distributed pseudo-random uint64 values in
// the range [0, 1<<64) directly.
// If a Rand r's underlying Source s implements Source64,
// then r.Uint64 returns the result of one call to s.Uint64
// instead of making two calls to s.Int63.
type Source64 interface {
Source
Uint64() uint64
}
// NewSource returns a new pseudo-random Source seeded with the given value.
// Unlike the default Source used by top-level functions, this source is not
// safe for concurrent use by multiple goroutines.
// The returned Source implements Source64.
func ( int64) Source {
return newSource()
}
func ( int64) *rngSource {
var rngSource
.Seed()
return &
}
// A Rand is a source of random numbers.
type Rand struct {
src Source
s64 Source64 // non-nil if src is source64
// readVal contains remainder of 63-bit integer used for bytes
// generation during most recent Read call.
// It is saved so next Read call can start where the previous
// one finished.
readVal int64
// readPos indicates the number of low-order bytes of readVal
// that are still valid.
readPos int8
}
// New returns a new Rand that uses random values from src
// to generate other random values.
func ( Source) *Rand {
, := .(Source64)
return &Rand{src: , s64: }
}
// Seed uses the provided seed value to initialize the generator to a deterministic state.
// Seed should not be called concurrently with any other Rand method.
func ( *Rand) ( int64) {
if , := .src.(*lockedSource); {
.seedPos(, &.readPos)
return
}
.src.Seed()
.readPos = 0
}
// Int63 returns a non-negative pseudo-random 63-bit integer as an int64.
func ( *Rand) () int64 { return .src.Int63() }
// Uint32 returns a pseudo-random 32-bit value as a uint32.
func ( *Rand) () uint32 { return uint32(.Int63() >> 31) }
// Uint64 returns a pseudo-random 64-bit value as a uint64.
func ( *Rand) () uint64 {
if .s64 != nil {
return .s64.Uint64()
}
return uint64(.Int63())>>31 | uint64(.Int63())<<32
}
// Int31 returns a non-negative pseudo-random 31-bit integer as an int32.
func ( *Rand) () int32 { return int32(.Int63() >> 32) }
// Int returns a non-negative pseudo-random int.
func ( *Rand) () int {
:= uint(.Int63())
return int( << 1 >> 1) // clear sign bit if int == int32
}
// Int63n returns, as an int64, a non-negative pseudo-random number in the half-open interval [0,n).
// It panics if n <= 0.
func ( *Rand) ( int64) int64 {
if <= 0 {
panic("invalid argument to Int63n")
}
if &(-1) == 0 { // n is power of two, can mask
return .Int63() & ( - 1)
}
:= int64((1 << 63) - 1 - (1<<63)%uint64())
:= .Int63()
for > {
= .Int63()
}
return %
}
// Int31n returns, as an int32, a non-negative pseudo-random number in the half-open interval [0,n).
// It panics if n <= 0.
func ( *Rand) ( int32) int32 {
if <= 0 {
panic("invalid argument to Int31n")
}
if &(-1) == 0 { // n is power of two, can mask
return .Int31() & ( - 1)
}
:= int32((1 << 31) - 1 - (1<<31)%uint32())
:= .Int31()
for > {
= .Int31()
}
return %
}
// int31n returns, as an int32, a non-negative pseudo-random number in the half-open interval [0,n).
// n must be > 0, but int31n does not check this; the caller must ensure it.
// int31n exists because Int31n is inefficient, but Go 1 compatibility
// requires that the stream of values produced by math/rand remain unchanged.
// int31n can thus only be used internally, by newly introduced APIs.
//
// For implementation details, see:
// https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction
// https://lemire.me/blog/2016/06/30/fast-random-shuffling
func ( *Rand) ( int32) int32 {
:= .Uint32()
:= uint64() * uint64()
:= uint32()
if < uint32() {
:= uint32(-) % uint32()
for < {
= .Uint32()
= uint64() * uint64()
= uint32()
}
}
return int32( >> 32)
}
// Intn returns, as an int, a non-negative pseudo-random number in the half-open interval [0,n).
// It panics if n <= 0.
func ( *Rand) ( int) int {
if <= 0 {
panic("invalid argument to Intn")
}
if <= 1<<31-1 {
return int(.Int31n(int32()))
}
return int(.Int63n(int64()))
}
// Float64 returns, as a float64, a pseudo-random number in the half-open interval [0.0,1.0).
func ( *Rand) () float64 {
// A clearer, simpler implementation would be:
// return float64(r.Int63n(1<<53)) / (1<<53)
// However, Go 1 shipped with
// return float64(r.Int63()) / (1 << 63)
// and we want to preserve that value stream.
//
// There is one bug in the value stream: r.Int63() may be so close
// to 1<<63 that the division rounds up to 1.0, and we've guaranteed
// that the result is always less than 1.0.
//
// We tried to fix this by mapping 1.0 back to 0.0, but since float64
// values near 0 are much denser than near 1, mapping 1 to 0 caused
// a theoretically significant overshoot in the probability of returning 0.
// Instead of that, if we round up to 1, just try again.
// Getting 1 only happens 1/2⁵³ of the time, so most clients
// will not observe it anyway.
:
:= float64(.Int63()) / (1 << 63)
if == 1 {
goto // resample; this branch is taken O(never)
}
return
}
// Float32 returns, as a float32, a pseudo-random number in the half-open interval [0.0,1.0).
func ( *Rand) () float32 {
// Same rationale as in Float64: we want to preserve the Go 1 value
// stream except we want to fix it not to return 1.0
// This only happens 1/2²⁴ of the time (plus the 1/2⁵³ of the time in Float64).
:
:= float32(.Float64())
if == 1 {
goto // resample; this branch is taken O(very rarely)
}
return
}
// Perm returns, as a slice of n ints, a pseudo-random permutation of the integers
// in the half-open interval [0,n).
func ( *Rand) ( int) []int {
:= make([]int, )
// In the following loop, the iteration when i=0 always swaps m[0] with m[0].
// A change to remove this useless iteration is to assign 1 to i in the init
// statement. But Perm also effects r. Making this change will affect
// the final state of r. So this change can't be made for compatibility
// reasons for Go 1.
for := 0; < ; ++ {
:= .Intn( + 1)
[] = []
[] =
}
return
}
// Shuffle pseudo-randomizes the order of elements.
// n is the number of elements. Shuffle panics if n < 0.
// swap swaps the elements with indexes i and j.
func ( *Rand) ( int, func(, int)) {
if < 0 {
panic("invalid argument to Shuffle")
}
// Fisher-Yates shuffle: https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle
// Shuffle really ought not be called with n that doesn't fit in 32 bits.
// Not only will it take a very long time, but with 2³¹! possible permutations,
// there's no way that any PRNG can have a big enough internal state to
// generate even a minuscule percentage of the possible permutations.
// Nevertheless, the right API signature accepts an int n, so handle it as best we can.
:= - 1
for ; > 1<<31-1-1; -- {
:= int(.Int63n(int64( + 1)))
(, )
}
for ; > 0; -- {
:= int(.int31n(int32( + 1)))
(, )
}
}
// Read generates len(p) random bytes and writes them into p. It
// always returns len(p) and a nil error.
// Read should not be called concurrently with any other Rand method.
func ( *Rand) ( []byte) ( int, error) {
switch src := .src.(type) {
case *lockedSource:
return .read(, &.readVal, &.readPos)
case *fastSource:
return .read(, &.readVal, &.readPos)
}
return read(, .src, &.readVal, &.readPos)
}
func ( []byte, Source, *int64, *int8) ( int, error) {
:= *
:= *
, := .(*rngSource)
for = 0; < len(); ++ {
if == 0 {
if != nil {
= .Int63()
} else {
= .Int63()
}
= 7
}
[] = byte()
>>= 8
--
}
* =
* =
return
}
/*
* Top-level convenience functions
*/
// globalRandGenerator is the source of random numbers for the top-level
// convenience functions. When possible it uses the runtime fastrand64
// function to avoid locking. This is not possible if the user called Seed,
// either explicitly or implicitly via GODEBUG=randautoseed=0.
var globalRandGenerator atomic.Pointer[Rand]
var randautoseed = godebug.New("randautoseed")
// globalRand returns the generator to use for the top-level convenience
// functions.
func () *Rand {
if := globalRandGenerator.Load(); != nil {
return
}
// This is the first call. Initialize based on GODEBUG.
var *Rand
if randautoseed.Value() == "0" {
randautoseed.IncNonDefault()
= New(new(lockedSource))
.Seed(1)
} else {
= &Rand{
src: &fastSource{},
s64: &fastSource{},
}
}
if !globalRandGenerator.CompareAndSwap(nil, ) {
// Two different goroutines called some top-level
// function at the same time. While the results in
// that case are unpredictable, if we just use r here,
// and we are using a seed, we will most likely return
// the same value for both calls. That doesn't seem ideal.
// Just use the first one to get in.
return globalRandGenerator.Load()
}
return
}
//go:linkname fastrand64
func () uint64
// fastSource is an implementation of Source64 that uses the runtime
// fastrand functions.
type fastSource struct {
// The mutex is used to avoid race conditions in Read.
mu sync.Mutex
}
func (*fastSource) () int64 {
return int64(fastrand64() & rngMask)
}
func (*fastSource) (int64) {
panic("internal error: call to fastSource.Seed")
}
func (*fastSource) () uint64 {
return fastrand64()
}
func ( *fastSource) ( []byte, *int64, *int8) ( int, error) {
.mu.Lock()
, = read(, , , )
.mu.Unlock()
return
}
// Seed uses the provided seed value to initialize the default Source to a
// deterministic state. Seed values that have the same remainder when
// divided by 2³¹-1 generate the same pseudo-random sequence.
// Seed, unlike the Rand.Seed method, is safe for concurrent use.
//
// If Seed is not called, the generator is seeded randomly at program startup.
//
// Prior to Go 1.20, the generator was seeded like Seed(1) at program startup.
// To force the old behavior, call Seed(1) at program startup.
// Alternately, set GODEBUG=randautoseed=0 in the environment
// before making any calls to functions in this package.
//
// Deprecated: As of Go 1.20 there is no reason to call Seed with
// a random value. Programs that call Seed with a known value to get
// a specific sequence of results should use New(NewSource(seed)) to
// obtain a local random generator.
func ( int64) {
:= globalRandGenerator.Load()
// If we are already using a lockedSource, we can just re-seed it.
if != nil {
if , := .src.(*lockedSource); {
.Seed()
return
}
}
// Otherwise either
// 1) orig == nil, which is the normal case when Seed is the first
// top-level function to be called, or
// 2) orig is already a fastSource, in which case we need to change
// to a lockedSource.
// Either way we do the same thing.
:= New(new(lockedSource))
.Seed()
if !globalRandGenerator.CompareAndSwap(, ) {
// Something changed underfoot. Retry to be safe.
()
}
}
// Int63 returns a non-negative pseudo-random 63-bit integer as an int64
// from the default Source.
func () int64 { return globalRand().Int63() }
// Uint32 returns a pseudo-random 32-bit value as a uint32
// from the default Source.
func () uint32 { return globalRand().Uint32() }
// Uint64 returns a pseudo-random 64-bit value as a uint64
// from the default Source.
func () uint64 { return globalRand().Uint64() }
// Int31 returns a non-negative pseudo-random 31-bit integer as an int32
// from the default Source.
func () int32 { return globalRand().Int31() }
// Int returns a non-negative pseudo-random int from the default Source.
func () int { return globalRand().Int() }
// Int63n returns, as an int64, a non-negative pseudo-random number in the half-open interval [0,n)
// from the default Source.
// It panics if n <= 0.
func ( int64) int64 { return globalRand().Int63n() }
// Int31n returns, as an int32, a non-negative pseudo-random number in the half-open interval [0,n)
// from the default Source.
// It panics if n <= 0.
func ( int32) int32 { return globalRand().Int31n() }
// Intn returns, as an int, a non-negative pseudo-random number in the half-open interval [0,n)
// from the default Source.
// It panics if n <= 0.
func ( int) int { return globalRand().Intn() }
// Float64 returns, as a float64, a pseudo-random number in the half-open interval [0.0,1.0)
// from the default Source.
func () float64 { return globalRand().Float64() }
// Float32 returns, as a float32, a pseudo-random number in the half-open interval [0.0,1.0)
// from the default Source.
func () float32 { return globalRand().Float32() }
// Perm returns, as a slice of n ints, a pseudo-random permutation of the integers
// in the half-open interval [0,n) from the default Source.
func ( int) []int { return globalRand().Perm() }
// Shuffle pseudo-randomizes the order of elements using the default Source.
// n is the number of elements. Shuffle panics if n < 0.
// swap swaps the elements with indexes i and j.
func ( int, func(, int)) { globalRand().Shuffle(, ) }
// Read generates len(p) random bytes from the default Source and
// writes them into p. It always returns len(p) and a nil error.
// Read, unlike the Rand.Read method, is safe for concurrent use.
//
// Deprecated: For almost all use cases, crypto/rand.Read is more appropriate.
func ( []byte) ( int, error) { return globalRand().Read() }
// NormFloat64 returns a normally distributed float64 in the range
// [-math.MaxFloat64, +math.MaxFloat64] with
// standard normal distribution (mean = 0, stddev = 1)
// from the default Source.
// To produce a different normal distribution, callers can
// adjust the output using:
//
// sample = NormFloat64() * desiredStdDev + desiredMean
func () float64 { return globalRand().NormFloat64() }
// ExpFloat64 returns an exponentially distributed float64 in the range
// (0, +math.MaxFloat64] with an exponential distribution whose rate parameter
// (lambda) is 1 and whose mean is 1/lambda (1) from the default Source.
// To produce a distribution with a different rate parameter,
// callers can adjust the output using:
//
// sample = ExpFloat64() / desiredRateParameter
func () float64 { return globalRand().ExpFloat64() }
type lockedSource struct {
lk sync.Mutex
s *rngSource
}
func ( *lockedSource) () ( int64) {
.lk.Lock()
= .s.Int63()
.lk.Unlock()
return
}
func ( *lockedSource) () ( uint64) {
.lk.Lock()
= .s.Uint64()
.lk.Unlock()
return
}
func ( *lockedSource) ( int64) {
.lk.Lock()
.seed()
.lk.Unlock()
}
// seedPos implements Seed for a lockedSource without a race condition.
func ( *lockedSource) ( int64, *int8) {
.lk.Lock()
.seed()
* = 0
.lk.Unlock()
}
// seed seeds the underlying source.
// The caller must have locked r.lk.
func ( *lockedSource) ( int64) {
if .s == nil {
.s = newSource()
} else {
.s.Seed()
}
}
// read implements Read for a lockedSource without a race condition.
func ( *lockedSource) ( []byte, *int64, *int8) ( int, error) {
.lk.Lock()
, = read(, .s, , )
.lk.Unlock()
return
}
The pages are generated with Golds v0.6.7. (GOOS=linux GOARCH=amd64) Golds is a Go 101 project developed by Tapir Liu. PR and bug reports are welcome and can be submitted to the issue list. Please follow @Go100and1 (reachable from the left QR code) to get the latest news of Golds. |