Source File
sum_generic.go
Belonging Package
vendor/golang.org/x/crypto/internal/poly1305
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file provides the generic implementation of Sum and MAC. Other files
// might provide optimized assembly implementations of some of this code.
package poly1305
import
// Poly1305 [RFC 7539] is a relatively simple algorithm: the authentication tag
// for a 64 bytes message is approximately
//
// s + m[0:16] * r⁴ + m[16:32] * r³ + m[32:48] * r² + m[48:64] * r mod 2¹³⁰ - 5
//
// for some secret r and s. It can be computed sequentially like
//
// for len(msg) > 0:
// h += read(msg, 16)
// h *= r
// h %= 2¹³⁰ - 5
// return h + s
//
// All the complexity is about doing performant constant-time math on numbers
// larger than any available numeric type.
func ( *[TagSize]byte, []byte, *[32]byte) {
:= newMACGeneric()
.Write()
.Sum()
}
func ( *[32]byte) macGeneric {
:= macGeneric{}
initialize(, &.macState)
return
}
// macState holds numbers in saturated 64-bit little-endian limbs. That is,
// the value of [x0, x1, x2] is x[0] + x[1] * 2⁶⁴ + x[2] * 2¹²⁸.
type macState struct {
// h is the main accumulator. It is to be interpreted modulo 2¹³⁰ - 5, but
// can grow larger during and after rounds. It must, however, remain below
// 2 * (2¹³⁰ - 5).
h [3]uint64
// r and s are the private key components.
r [2]uint64
s [2]uint64
}
type macGeneric struct {
macState
buffer [TagSize]byte
offset int
}
// Write splits the incoming message into TagSize chunks, and passes them to
// update. It buffers incomplete chunks.
func ( *macGeneric) ( []byte) (int, error) {
:= len()
if .offset > 0 {
:= copy(.buffer[.offset:], )
if .offset+ < TagSize {
.offset +=
return , nil
}
= [:]
.offset = 0
updateGeneric(&.macState, .buffer[:])
}
if := len() - (len() % TagSize); > 0 {
updateGeneric(&.macState, [:])
= [:]
}
if len() > 0 {
.offset += copy(.buffer[.offset:], )
}
return , nil
}
// Sum flushes the last incomplete chunk from the buffer, if any, and generates
// the MAC output. It does not modify its state, in order to allow for multiple
// calls to Sum, even if no Write is allowed after Sum.
func ( *macGeneric) ( *[TagSize]byte) {
:= .macState
if .offset > 0 {
updateGeneric(&, .buffer[:.offset])
}
finalize(, &.h, &.s)
}
// [rMask0, rMask1] is the specified Poly1305 clamping mask in little-endian. It
// clears some bits of the secret coefficient to make it possible to implement
// multiplication more efficiently.
const (
rMask0 = 0x0FFFFFFC0FFFFFFF
rMask1 = 0x0FFFFFFC0FFFFFFC
)
// initialize loads the 256-bit key into the two 128-bit secret values r and s.
func ( *[32]byte, *macState) {
.r[0] = binary.LittleEndian.Uint64([0:8]) & rMask0
.r[1] = binary.LittleEndian.Uint64([8:16]) & rMask1
.s[0] = binary.LittleEndian.Uint64([16:24])
.s[1] = binary.LittleEndian.Uint64([24:32])
}
// uint128 holds a 128-bit number as two 64-bit limbs, for use with the
// bits.Mul64 and bits.Add64 intrinsics.
type uint128 struct {
lo, hi uint64
}
func (, uint64) uint128 {
, := bitsMul64(, )
return uint128{, }
}
func (, uint128) uint128 {
, := bitsAdd64(.lo, .lo, 0)
, := bitsAdd64(.hi, .hi, )
if != 0 {
panic("poly1305: unexpected overflow")
}
return uint128{, }
}
func ( uint128) uint128 {
.lo = .lo>>2 | (.hi&3)<<62
.hi = .hi >> 2
return
}
// updateGeneric absorbs msg into the state.h accumulator. For each chunk m of
// 128 bits of message, it computes
//
// h₊ = (h + m) * r mod 2¹³⁰ - 5
//
// If the msg length is not a multiple of TagSize, it assumes the last
// incomplete chunk is the final one.
func ( *macState, []byte) {
, , := .h[0], .h[1], .h[2]
, := .r[0], .r[1]
for len() > 0 {
var uint64
// For the first step, h + m, we use a chain of bits.Add64 intrinsics.
// The resulting value of h might exceed 2¹³⁰ - 5, but will be partially
// reduced at the end of the multiplication below.
//
// The spec requires us to set a bit just above the message size, not to
// hide leading zeroes. For full chunks, that's 1 << 128, so we can just
// add 1 to the most significant (2¹²⁸) limb, h2.
if len() >= TagSize {
, = bitsAdd64(, binary.LittleEndian.Uint64([0:8]), 0)
, = bitsAdd64(, binary.LittleEndian.Uint64([8:16]), )
+= + 1
= [TagSize:]
} else {
var [TagSize]byte
copy([:], )
[len()] = 1
, = bitsAdd64(, binary.LittleEndian.Uint64([0:8]), 0)
, = bitsAdd64(, binary.LittleEndian.Uint64([8:16]), )
+=
= nil
}
// Multiplication of big number limbs is similar to elementary school
// columnar multiplication. Instead of digits, there are 64-bit limbs.
//
// We are multiplying a 3 limbs number, h, by a 2 limbs number, r.
//
// h2 h1 h0 x
// r1 r0 =
// ----------------
// h2r0 h1r0 h0r0 <-- individual 128-bit products
// + h2r1 h1r1 h0r1
// ------------------------
// m3 m2 m1 m0 <-- result in 128-bit overlapping limbs
// ------------------------
// m3.hi m2.hi m1.hi m0.hi <-- carry propagation
// + m3.lo m2.lo m1.lo m0.lo
// -------------------------------
// t4 t3 t2 t1 t0 <-- final result in 64-bit limbs
//
// The main difference from pen-and-paper multiplication is that we do
// carry propagation in a separate step, as if we wrote two digit sums
// at first (the 128-bit limbs), and then carried the tens all at once.
:= mul64(, )
:= mul64(, )
:= mul64(, )
:= mul64(, )
:= mul64(, )
:= mul64(, )
// Since h2 is known to be at most 7 (5 + 1 + 1), and r0 and r1 have their
// top 4 bits cleared by rMask{0,1}, we know that their product is not going
// to overflow 64 bits, so we can ignore the high part of the products.
//
// This also means that the product doesn't have a fifth limb (t4).
if .hi != 0 {
panic("poly1305: unexpected overflow")
}
if .hi != 0 {
panic("poly1305: unexpected overflow")
}
:=
:= add128(, ) // These two additions don't overflow thanks again
:= add128(, ) // to the 4 masked bits at the top of r0 and r1.
:=
:= .lo
, := bitsAdd64(.lo, .hi, 0)
, := bitsAdd64(.lo, .hi, )
, := bitsAdd64(.lo, .hi, )
// Now we have the result as 4 64-bit limbs, and we need to reduce it
// modulo 2¹³⁰ - 5. The special shape of this Crandall prime lets us do
// a cheap partial reduction according to the reduction identity
//
// c * 2¹³⁰ + n = c * 5 + n mod 2¹³⁰ - 5
//
// because 2¹³⁰ = 5 mod 2¹³⁰ - 5. Partial reduction since the result is
// likely to be larger than 2¹³⁰ - 5, but still small enough to fit the
// assumptions we make about h in the rest of the code.
//
// See also https://speakerdeck.com/gtank/engineering-prime-numbers?slide=23
// We split the final result at the 2¹³⁰ mark into h and cc, the carry.
// Note that the carry bits are effectively shifted left by 2, in other
// words, cc = c * 4 for the c in the reduction identity.
, , = , , &maskLow2Bits
:= uint128{ & maskNotLow2Bits, }
// To add c * 5 to h, we first add cc = c * 4, and then add (cc >> 2) = c.
, = bitsAdd64(, .lo, 0)
, = bitsAdd64(, .hi, )
+=
= shiftRightBy2()
, = bitsAdd64(, .lo, 0)
, = bitsAdd64(, .hi, )
+=
// h2 is at most 3 + 1 + 1 = 5, making the whole of h at most
//
// 5 * 2¹²⁸ + (2¹²⁸ - 1) = 6 * 2¹²⁸ - 1
}
.h[0], .h[1], .h[2] = , ,
}
const (
maskLow2Bits uint64 = 0x0000000000000003
maskNotLow2Bits uint64 = ^maskLow2Bits
)
// select64 returns x if v == 1 and y if v == 0, in constant time.
func (, , uint64) uint64 { return ^(-1)& | (-1)& }
// [p0, p1, p2] is 2¹³⁰ - 5 in little endian order.
const (
p0 = 0xFFFFFFFFFFFFFFFB
p1 = 0xFFFFFFFFFFFFFFFF
p2 = 0x0000000000000003
)
// finalize completes the modular reduction of h and computes
//
// out = h + s mod 2¹²⁸
func ( *[TagSize]byte, *[3]uint64, *[2]uint64) {
, , := [0], [1], [2]
// After the partial reduction in updateGeneric, h might be more than
// 2¹³⁰ - 5, but will be less than 2 * (2¹³⁰ - 5). To complete the reduction
// in constant time, we compute t = h - (2¹³⁰ - 5), and select h as the
// result if the subtraction underflows, and t otherwise.
, := bitsSub64(, p0, 0)
, := bitsSub64(, p1, )
_, = bitsSub64(, p2, )
// h = h if h < p else h - p
= select64(, , )
= select64(, , )
// Finally, we compute the last Poly1305 step
//
// tag = h + s mod 2¹²⁸
//
// by just doing a wide addition with the 128 low bits of h and discarding
// the overflow.
, := bitsAdd64(, [0], 0)
, _ = bitsAdd64(, [1], )
binary.LittleEndian.PutUint64([0:8], )
binary.LittleEndian.PutUint64([8:16], )
}
The pages are generated with Golds v0.6.7. (GOOS=linux GOARCH=amd64) Golds is a Go 101 project developed by Tapir Liu. PR and bug reports are welcome and can be submitted to the issue list. Please follow @Go100and1 (reachable from the left QR code) to get the latest news of Golds. |