crypto/rsa.PrivateKey.Primes (field)

31 uses

	crypto/rsa (current package)
		rsa.go#L112: 	Primes    []*big.Int // prime factors of N, has >= 2 elements.
		rsa.go#L135: 	if len(priv.Primes) != len(xx.Primes) {
		rsa.go#L138: 	for i := range priv.Primes {
		rsa.go#L139: 		if !bigIntEqual(priv.Primes[i], xx.Primes[i]) {
		rsa.go#L237: 	for _, prime := range priv.Primes {
		rsa.go#L256: 	for _, prime := range priv.Primes {
		rsa.go#L335: 			Primes: []*big.Int{P, Q},
		rsa.go#L428: 			priv.Primes = primes
		rsa.go#L584: 	if priv.Precomputed.n == nil && len(priv.Primes) == 2 {
		rsa.go#L592: 		priv.Precomputed.p, err = bigmod.NewModulusFromBig(priv.Primes[0])
		rsa.go#L598: 		priv.Precomputed.q, err = bigmod.NewModulusFromBig(priv.Primes[1])
		rsa.go#L611: 	priv.Precomputed.Dp = new(big.Int).Sub(priv.Primes[0], bigOne)
		rsa.go#L614: 	priv.Precomputed.Dq = new(big.Int).Sub(priv.Primes[1], bigOne)
		rsa.go#L617: 	priv.Precomputed.Qinv = new(big.Int).ModInverse(priv.Primes[1], priv.Primes[0])
		rsa.go#L619: 	r := new(big.Int).Mul(priv.Primes[0], priv.Primes[1])
		rsa.go#L620: 	priv.Precomputed.CRTValues = make([]CRTValue, len(priv.Primes)-2)
		rsa.go#L621: 	for i := 2; i < len(priv.Primes); i++ {
		rsa.go#L622: 		prime := priv.Primes[i]
		rsa.go#L642: 	if len(priv.Primes) <= 2 {

	crypto/x509
		pkcs1.go#L78: 	key.Primes = make([]*big.Int, 2+len(priv.AdditionalPrimes))
		pkcs1.go#L79: 	key.Primes[0] = priv.P
		pkcs1.go#L80: 	key.Primes[1] = priv.Q
		pkcs1.go#L85: 		key.Primes[i+2] = a.Prime
		pkcs1.go#L108: 	if len(key.Primes) > 2 {
		pkcs1.go#L117: 		P:       key.Primes[0],
		pkcs1.go#L118: 		Q:       key.Primes[1],
		pkcs1.go#L126: 		priv.AdditionalPrimes[i].Prime = key.Primes[2+i]