func math.Log

28 uses

	math (current package)
		acosh.go#L59: 		return Log(x) + Ln2 // x > 2**28
		acosh.go#L61: 		return Log(2*x - 1/(x+Sqrt(x*x-1))) // 2**28 > x > 2
		asinh.go#L65: 		temp = Log(x) + Ln2 // |x| > 2**28
		asinh.go#L67: 		temp = Log(2*x + 1/(Sqrt(x*x+1)+x)) // 2**28 > |x| > 2.0
		erfinv.go#L100: 		r := Sqrt(Ln2 - Log(1.0-x))
		j0.go#L222: 		return U00 + (2/Pi)*Log(x) // |x| < ~7.4506e-9
		j0.go#L227: 	return u/v + (2/Pi)*J0(x)*Log(x) // ~7.4506e-9 < |x| < 2.0
		j1.go#L222: 	return x*(u/v) + (2/Pi)*(J1(x)*Log(x)-1/x)
		jn.go#L199: 			tmp = tmp * Log(Abs(v*tmp))
		lgamma.go#L211: 		lgamma = -Log(x)
		lgamma.go#L225: 		nadj = Log(Pi / Abs(t*x))
		lgamma.go#L239: 			lgamma = -Log(x)
		lgamma.go#L307: 			lgamma += Log(z)
		lgamma.go#L310: 		t := Log(x)
		lgamma.go#L316: 		lgamma = x * (Log(x) - 1)
		log.go#L81: func Log(x float64) float64 {
		log10.go#L17: 	return Log(x) * (1 / Ln10)
		log10.go#L36: 	return Log(frac)*(1/Ln2) + float64(exp)
		pow.go#L128: 		a1 = Exp(yf * Log(x))

	math/rand
		exp.go#L39: 			return re - math.Log(r.Float64())
		normal.go#L50: 				x = -math.Log(r.Float64()) * (1.0 / rn)
		normal.go#L51: 				y := -math.Log(r.Float64())
		zipf.go#L28: 	return math.Exp(z.oneminusQ*math.Log(z.v+x)) * z.oneminusQinv
		zipf.go#L32: 	return math.Exp(z.oneminusQinv*math.Log(z.oneminusQ*x)) - z.v
		zipf.go#L51: 	z.hx0minusHxm = z.h(0.5) - math.Exp(math.Log(z.v)*(-z.q)) - z.hxm
		zipf.go#L52: 	z.s = 1 - z.hinv(z.h(1.5)-math.Exp(-z.q*math.Log(z.v+1.0)))
		zipf.go#L72: 		if ur >= z.h(k+0.5)-math.Exp(-math.Log(k+z.v)*z.q) {

	crypto/rsa
		rsa.go#L359: 		pi := primeLimit / (math.Log(primeLimit) - 1)