func math.Sqrt

21 uses

	math (current package)
		acosh.go#L61: 		return Log(2*x - 1/(x+Sqrt(x*x-1))) // 2**28 > x > 2
		acosh.go#L64: 	return Log1p(t + Sqrt(2*t+t*t)) // 2 >= x > 1
		asin.go#L40: 	temp := Sqrt(1 - x*x)
		asinh.go#L67: 		temp = Log(2*x + 1/(Sqrt(x*x+1)+x)) // 2**28 > |x| > 2.0
		asinh.go#L71: 		temp = Log1p(x + x*x/(1+Sqrt(1+x*x))) // 2.0 > |x| > 2**-28
		erfinv.go#L100: 		r := Sqrt(Ln2 - Log(1.0-x))
		hypot.go#L43: 	return p * Sqrt(1+q*q)
		j0.go#L124: 			z = (1 / SqrtPi) * cc / Sqrt(x)
		j0.go#L128: 			z = (1 / SqrtPi) * (u*cc - v*ss) / Sqrt(x)
		j0.go#L213: 			z = (1 / SqrtPi) * ss / Sqrt(x)
		j0.go#L217: 			z = (1 / SqrtPi) * (u*ss + v*cc) / Sqrt(x)
		j1.go#L123: 			z = (1 / SqrtPi) * cc / Sqrt(x)
		j1.go#L127: 			z = (1 / SqrtPi) * (u*cc - v*ss) / Sqrt(x)
		j1.go#L208: 			z = (1 / SqrtPi) * ss / Sqrt(x)
		j1.go#L212: 			z = (1 / SqrtPi) * (u*ss + v*cc) / Sqrt(x)
		jn.go#L117: 			b = (1 / SqrtPi) * temp / Sqrt(x)
		jn.go#L293: 		b = (1 / SqrtPi) * temp / Sqrt(x)
		pow.go#L96: 		return Sqrt(x)
		pow.go#L98: 		return 1 / Sqrt(x)
		sqrt.go#L93: func Sqrt(x float64) float64 {

	math/big
		sqrt.go#L112: 	sqi.SetFloat64(1 / math.Sqrt(xf))