math/big.Int.Exp (method)

26 uses

	math/big (current package)
		int.go#L565: func (z *Int) Exp(x, y, m *Int) *Int {
		int.go#L1001: 	z.Exp(x, e, p)               // z = x^e mod p
		int.go#L1018: 	alpha := new(Int).Exp(tx, e, p)
		int.go#L1054: 	y.Exp(x, &y, p)  // y = x^((s+1)/2)
		int.go#L1055: 	b.Exp(x, &s, p)  // b = x^s
		int.go#L1056: 	g.Exp(&n, &s, p) // g = n^s
		int.go#L1071: 		t.SetInt64(0).SetBit(&t, int(r-m-1), 1).Exp(&g, &t, p)

	crypto/dsa
		dsa.go#L146: 		g.Exp(h, e, p)
		dsa.go#L180: 	priv.Y.Exp(priv.G, x, priv.P)
		dsa.go#L191: 	return new(big.Int).Exp(k, pMinus2, P)
		dsa.go#L238: 		r = new(big.Int).Exp(priv.G, k, priv.P)
		dsa.go#L302: 	v := u1.Exp(pub.G, u1, pub.P)
		dsa.go#L303: 	u2.Exp(pub.Y, u2, pub.P)

	github.com/gotd/td/internal/crypto
		dh.go#L32: 	safetyRangeMin := big.NewInt(0).Exp(big.NewInt(2), big.NewInt(RSAKeyBits-64), nil)
		rsa.go#L35: 	m := new(big.Int).Exp(c, e, pub.N)
		rsa.go#L43: 	c := new(big.Int).Exp(z, e, key.N)
		rsa.go#L51: 	m := new(big.Int).Exp(c, key.D, key.N)

	github.com/gotd/td/internal/crypto/srp
		new_hash.go#L20: 	v = new(big.Int).Exp(g, x, p)
		srp.go#L58: 	return new(big.Int).Exp(x, y, m)

	github.com/gotd/td/internal/exchange
		client_flow.go#L64: 	pqMax := big.NewInt(0).Exp(big.NewInt(2), big.NewInt(63), nil)
		client_flow.go#L184: 		gB := big.NewInt(0).Exp(g, bParam, dhPrime)
		client_flow.go#L218: 		authKey := big.NewInt(0).Exp(gA, bParam, dhPrime)
		generator.go#L54: 	safetyRangeMin := big.NewInt(0).Exp(big.NewInt(2), big.NewInt(crypto.RSAKeyBits-64), nil)
		generator.go#L64: 		ga = big.NewInt(0).Exp(gBig, a, dhPrime)
		server_flow.go#L250: 	if !crypto.FillBytes(big.NewInt(0).Exp(gB, a, dhPrime), authKey[:]) {

	github.com/gotd/td/telegram/dcs
		dns.go#L54: 	y := new(big.Int).Exp(x, dnsKey.eBig, dnsKey.N)