// Copyright 2009 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.package flateimport ()// hcode is a huffman code with a bit code and bit length.typehcodestruct {code, lenuint16}typehuffmanEncoderstruct {codes []hcodefreqcache []literalNodebitCount [17]int32lnsbyLiteral// stored to avoid repeated allocation in generatelfsbyFreq// stored to avoid repeated allocation in generate}typeliteralNodestruct {literaluint16freqint32}// A levelInfo describes the state of the constructed tree for a given depth.typelevelInfostruct {// Our level. for better printinglevelint32// The frequency of the last node at this levellastFreqint32// The frequency of the next character to add to this levelnextCharFreqint32// The frequency of the next pair (from level below) to add to this level. // Only valid if the "needed" value of the next lower level is 0.nextPairFreqint32// The number of chains remaining to generate for this level before moving // up to the next levelneededint32}// set sets the code and length of an hcode.func ( *hcode) ( uint16, uint16) { .len = .code = }func () literalNode { returnliteralNode{math.MaxUint16, math.MaxInt32} }func ( int) *huffmanEncoder {return &huffmanEncoder{codes: make([]hcode, )}}// Generates a HuffmanCode corresponding to the fixed literal table.func () *huffmanEncoder { := newHuffmanEncoder(maxNumLit) := .codesvaruint16for = 0; < maxNumLit; ++ {varuint16varuint16switch {case < 144:// size 8, 000110000 .. 10111111 = + 48 = 8case < 256:// size 9, 110010000 .. 111111111 = + 400 - 144 = 9case < 280:// size 7, 0000000 .. 0010111 = - 256 = 7default:// size 8, 11000000 .. 11000111 = + 192 - 280 = 8 } [] = hcode{code: reverseBits(, byte()), len: } }return}func () *huffmanEncoder { := newHuffmanEncoder(30) := .codesfor := range { [] = hcode{code: reverseBits(uint16(), 5), len: 5} }return}varfixedLiteralEncoding *huffmanEncoder = generateFixedLiteralEncoding()varfixedOffsetEncoding *huffmanEncoder = generateFixedOffsetEncoding()func ( *huffmanEncoder) ( []int32) int {varintfor , := range {if != 0 { += int() * int(.codes[].len) } }return}constmaxBitsLimit = 16// bitCounts computes the number of literals assigned to each bit size in the Huffman encoding.// It is only called when list.length >= 3.// The cases of 0, 1, and 2 literals are handled by special case code.//// list is an array of the literals with non-zero frequencies// and their associated frequencies. The array is in order of increasing// frequency and has as its last element a special element with frequency// MaxInt32.//// maxBits is the maximum number of bits that should be used to encode any literal.// It must be less than 16.//// bitCounts returns an integer slice in which slice[i] indicates the number of literals// that should be encoded in i bits.func ( *huffmanEncoder) ( []literalNode, int32) []int32 {if >= maxBitsLimit {panic("flate: maxBits too large") } := int32(len()) = [0 : +1] [] = maxNode()// The tree can't have greater depth than n - 1, no matter what. This // saves a little bit of work in some small casesif > -1 { = - 1 }// Create information about each of the levels. // A bogus "Level 0" whose sole purpose is so that // level1.prev.needed==0. This makes level1.nextPairFreq // be a legitimate value that never gets chosen.var [maxBitsLimit]levelInfo// leafCounts[i] counts the number of literals at the left // of ancestors of the rightmost node at level i. // leafCounts[i][j] is the number of literals at the left // of the level j ancestor.var [maxBitsLimit][maxBitsLimit]int32for := int32(1); <= ; ++ {// For every level, the first two items are the first two characters. // We initialize the levels as if we had already figured this out. [] = levelInfo{level: ,lastFreq: [1].freq,nextCharFreq: [2].freq,nextPairFreq: [0].freq + [1].freq, } [][] = 2if == 1 { [].nextPairFreq = math.MaxInt32 } }// We need a total of 2*n - 2 items at top level and have already generated 2. [].needed = 2* - 4 := for { := &[]if .nextPairFreq == math.MaxInt32 && .nextCharFreq == math.MaxInt32 {// We've run out of both leafs and pairs. // End all calculations for this level. // To make sure we never come back to this level or any lower level, // set nextPairFreq impossibly large. .needed = 0 [+1].nextPairFreq = math.MaxInt32 ++continue } := .lastFreqif .nextCharFreq < .nextPairFreq {// The next item on this row is a leaf node. := [][] + 1 .lastFreq = .nextCharFreq// Lower leafCounts are the same of the previous node. [][] = .nextCharFreq = [].freq } else {// The next item on this row is a pair from the previous row. // nextPairFreq isn't valid until we generate two // more values in the level below .lastFreq = .nextPairFreq// Take leaf counts from the lower level, except counts[level] remains the same.copy([][:], [-1][:]) [.level-1].needed = 2 }if .needed--; .needed == 0 {// We've done everything we need to do for this level. // Continue calculating one level up. Fill in nextPairFreq // of that level with the sum of the two nodes we've just calculated on // this level.if .level == {// All done!break } [.level+1].nextPairFreq = + .lastFreq ++ } else {// If we stole from below, move down temporarily to replenish it.for [-1].needed > 0 { -- } } }// Somethings is wrong if at the end, the top level is null or hasn't used // all of the leaves.if [][] != {panic("leafCounts[maxBits][maxBits] != n") } := .bitCount[:+1] := 1 := &[]for := ; > 0; -- {// chain.leafCount gives the number of literals requiring at least "bits" // bits to encode. [] = [] - [-1] ++ }return}// Look at the leaves and assign them a bit count and an encoding as specified// in RFC 1951 3.2.2func ( *huffmanEncoder) ( []int32, []literalNode) { := uint16(0)for , := range { <<= 1if == 0 || == 0 {continue }// The literals list[len(list)-bits] .. list[len(list)-bits] // are encoded using "bits" bits, and get the values // code, code + 1, .... The code values are // assigned in literal order (not frequency order). := [len()-int():] .lns.sort()for , := range { .codes[.literal] = hcode{code: reverseBits(, uint8()), len: uint16()} ++ } = [0 : len()-int()] }}// Update this Huffman Code object to be the minimum code for the specified frequency count.//// freq is an array of frequencies, in which freq[i] gives the frequency of literal i.// maxBits The maximum number of bits to use for any literal.func ( *huffmanEncoder) ( []int32, int32) {if .freqcache == nil {// Allocate a reusable buffer with the longest possible frequency table. // Possible lengths are codegenCodeCount, offsetCodeCount and maxNumLit. // The largest of these is maxNumLit, so we allocate for that case. .freqcache = make([]literalNode, maxNumLit+1) } := .freqcache[:len()+1]// Number of non-zero literals := 0// Set list to be the set of all non-zero literals and their frequenciesfor , := range {if != 0 { [] = literalNode{uint16(), } ++ } else { .codes[].len = 0 } } = [:]if <= 2 {// Handle the small cases here, because they are awkward for the general case code. With // two or fewer literals, everything has bit length 1.for , := range {// "list" is in order of increasing literal value. .codes[.literal].set(uint16(), 1) }return } .lfs.sort()// Get the number of literals for each bit count := .bitCounts(, )// And do the assignment .assignEncodingAndSize(, )}typebyLiteral []literalNodefunc ( *byLiteral) ( []literalNode) { * = byLiteral()sort.Sort()}func ( byLiteral) () int { returnlen() }func ( byLiteral) (, int) bool {return [].literal < [].literal}func ( byLiteral) (, int) { [], [] = [], [] }typebyFreq []literalNodefunc ( *byFreq) ( []literalNode) { * = byFreq()sort.Sort()}func ( byFreq) () int { returnlen() }func ( byFreq) (, int) bool {if [].freq == [].freq {return [].literal < [].literal }return [].freq < [].freq}func ( byFreq) (, int) { [], [] = [], [] }func ( uint16, byte) uint16 {returnbits.Reverse16( << (16 - ))}
The pages are generated with Goldsv0.6.7. (GOOS=linux GOARCH=amd64)
Golds is a Go 101 project developed by Tapir Liu.
PR and bug reports are welcome and can be submitted to the issue list.
Please follow @Go100and1 (reachable from the left QR code) to get the latest news of Golds.