// Copyright 2013 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.package ellipticimport ()varp224 = &nistCurve[*nistec.P224Point]{newPoint: nistec.NewP224Point,}func () {p224.params = &CurveParams{Name: "P-224",BitSize: 224,// FIPS 186-4, section D.1.2.2P: bigFromDecimal("26959946667150639794667015087019630673557916260026308143510066298881"),N: bigFromDecimal("26959946667150639794667015087019625940457807714424391721682722368061"),B: bigFromHex("b4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4"),Gx: bigFromHex("b70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21"),Gy: bigFromHex("bd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34"), }}typep256Curvestruct {nistCurve[*nistec.P256Point]}varp256 = &p256Curve{nistCurve[*nistec.P256Point]{newPoint: nistec.NewP256Point,}}func () {p256.params = &CurveParams{Name: "P-256",BitSize: 256,// FIPS 186-4, section D.1.2.3P: bigFromDecimal("115792089210356248762697446949407573530086143415290314195533631308867097853951"),N: bigFromDecimal("115792089210356248762697446949407573529996955224135760342422259061068512044369"),B: bigFromHex("5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b"),Gx: bigFromHex("6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296"),Gy: bigFromHex("4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5"), }}varp384 = &nistCurve[*nistec.P384Point]{newPoint: nistec.NewP384Point,}func () {p384.params = &CurveParams{Name: "P-384",BitSize: 384,// FIPS 186-4, section D.1.2.4P: bigFromDecimal("394020061963944792122790401001436138050797392704654" +"46667948293404245721771496870329047266088258938001861606973112319"),N: bigFromDecimal("394020061963944792122790401001436138050797392704654" +"46667946905279627659399113263569398956308152294913554433653942643"),B: bigFromHex("b3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088" +"f5013875ac656398d8a2ed19d2a85c8edd3ec2aef"),Gx: bigFromHex("aa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741" +"e082542a385502f25dbf55296c3a545e3872760ab7"),Gy: bigFromHex("3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da31" +"13b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f"), }}varp521 = &nistCurve[*nistec.P521Point]{newPoint: nistec.NewP521Point,}func () {p521.params = &CurveParams{Name: "P-521",BitSize: 521,// FIPS 186-4, section D.1.2.5P: bigFromDecimal("68647976601306097149819007990813932172694353001433" +"0540939446345918554318339765605212255964066145455497729631139148" +"0858037121987999716643812574028291115057151"),N: bigFromDecimal("68647976601306097149819007990813932172694353001433" +"0540939446345918554318339765539424505774633321719753296399637136" +"3321113864768612440380340372808892707005449"),B: bigFromHex("0051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8" +"b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef" +"451fd46b503f00"),Gx: bigFromHex("00c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f8" +"28af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf9" +"7e7e31c2e5bd66"),Gy: bigFromHex("011839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817" +"afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088" +"be94769fd16650"), }}// nistCurve is a Curve implementation based on a nistec Point.//// It's a wrapper that exposes the big.Int-based Curve interface and encodes the// legacy idiosyncrasies it requires, such as invalid and infinity point// handling.//// To interact with the nistec package, points are encoded into and decoded from// properly formatted byte slices. All big.Int use is limited to this package.// Encoding and decoding is 1/1000th of the runtime of a scalar multiplication,// so the overhead is acceptable.typenistCurve[ nistPoint[]] struct {newPointfunc() params *CurveParams}// nistPoint is a generic constraint for the nistec Point types.typenistPoint[ any] interface {Bytes() []byteSetBytes([]byte) (, error)Add(, ) Double() ScalarMult(, []byte) (, error)ScalarBaseMult([]byte) (, error)}func ( *nistCurve[]) () *CurveParams {return .params}func ( *nistCurve[]) (, *big.Int) bool {// IsOnCurve is documented to reject (0, 0), the conventional point at // infinity, which however is accepted by pointFromAffine.if .Sign() == 0 && .Sign() == 0 {returnfalse } , := .pointFromAffine(, )return == nil}func ( *nistCurve[]) (, *big.Int) ( , error) {// (0, 0) is by convention the point at infinity, which can't be represented // in affine coordinates. See Issue 37294.if .Sign() == 0 && .Sign() == 0 {return .newPoint(), nil }// Reject values that would not get correctly encoded.if .Sign() < 0 || .Sign() < 0 {return , errors.New("negative coordinate") }if .BitLen() > .params.BitSize || .BitLen() > .params.BitSize {return , errors.New("overflowing coordinate") }// Encode the coordinates and let SetBytes reject invalid points. := (.params.BitSize + 7) / 8 := make([]byte, 1+2*) [0] = 4// uncompressed point .FillBytes([1 : 1+]) .FillBytes([1+ : 1+2*])return .newPoint().SetBytes()}func ( *nistCurve[]) ( ) (, *big.Int) { := .Bytes()iflen() == 1 && [0] == 0 {// This is the encoding of the point at infinity, which the affine // coordinates API represents as (0, 0) by convention.returnnew(big.Int), new(big.Int) } := (.params.BitSize + 7) / 8 = new(big.Int).SetBytes([1 : 1+]) = new(big.Int).SetBytes([1+:])return , }func ( *nistCurve[]) (, , , *big.Int) (*big.Int, *big.Int) { , := .pointFromAffine(, )if != nil {panic("crypto/elliptic: Add was called on an invalid point") } , := .pointFromAffine(, )if != nil {panic("crypto/elliptic: Add was called on an invalid point") }return .pointToAffine(.Add(, ))}func ( *nistCurve[]) (, *big.Int) (*big.Int, *big.Int) { , := .pointFromAffine(, )if != nil {panic("crypto/elliptic: Double was called on an invalid point") }return .pointToAffine(.Double())}// normalizeScalar brings the scalar within the byte size of the order of the// curve, as expected by the nistec scalar multiplication functions.func ( *nistCurve[]) ( []byte) []byte { := (.params.N.BitLen() + 7) / 8iflen() == {return } := new(big.Int).SetBytes()iflen() > { .Mod(, .params.N) } := make([]byte, )return .FillBytes()}func ( *nistCurve[]) (, *big.Int, []byte) (*big.Int, *big.Int) { , := .pointFromAffine(, )if != nil {panic("crypto/elliptic: ScalarMult was called on an invalid point") } = .normalizeScalar() , = .ScalarMult(, )if != nil {panic("crypto/elliptic: nistec rejected normalized scalar") }return .pointToAffine()}func ( *nistCurve[]) ( []byte) (*big.Int, *big.Int) { = .normalizeScalar() , := .newPoint().ScalarBaseMult()if != nil {panic("crypto/elliptic: nistec rejected normalized scalar") }return .pointToAffine()}// CombinedMult returns [s1]G + [s2]P where G is the generator. It's used// through an interface upgrade in crypto/ecdsa.func ( *nistCurve[]) (, *big.Int, , []byte) (, *big.Int) { = .normalizeScalar() , := .newPoint().ScalarBaseMult()if != nil {panic("crypto/elliptic: nistec rejected normalized scalar") } , := .pointFromAffine(, )if != nil {panic("crypto/elliptic: CombinedMult was called on an invalid point") } = .normalizeScalar() , = .ScalarMult(, )if != nil {panic("crypto/elliptic: nistec rejected normalized scalar") }return .pointToAffine(.Add(, ))}func ( *nistCurve[]) ( []byte) (, *big.Int) {iflen() == 0 || [0] != 4 {returnnil, nil }// Use SetBytes to check that data encodes a valid point. , := .newPoint().SetBytes()if != nil {returnnil, nil }// We don't use pointToAffine because it involves an expensive field // inversion to convert from Jacobian to affine coordinates, which we // already have. := (.params.BitSize + 7) / 8 = new(big.Int).SetBytes([1 : 1+]) = new(big.Int).SetBytes([1+:])return , }func ( *nistCurve[]) ( []byte) (, *big.Int) {iflen() == 0 || ([0] != 2 && [0] != 3) {returnnil, nil } , := .newPoint().SetBytes()if != nil {returnnil, nil }return .pointToAffine()}func ( string) *big.Int { , := new(big.Int).SetString(, 10)if ! {panic("crypto/elliptic: internal error: invalid encoding") }return}func ( string) *big.Int { , := new(big.Int).SetString(, 16)if ! {panic("crypto/elliptic: internal error: invalid encoding") }return}
The pages are generated with Goldsv0.6.7. (GOOS=linux GOARCH=amd64)
Golds is a Go 101 project developed by Tapir Liu.
PR and bug reports are welcome and can be submitted to the issue list.
Please follow @Go100and1 (reachable from the left QR code) to get the latest news of Golds.