// Copyright 2009 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.
/*Package hmac implements the Keyed-Hash Message Authentication Code (HMAC) asdefined in U.S. Federal Information Processing Standards Publication 198.An HMAC is a cryptographic hash that uses a key to sign a message.The receiver verifies the hash by recomputing it using the same key.Receivers should be careful to use Equal to compare MACs in order to avoidtiming side-channels: // ValidMAC reports whether messageMAC is a valid HMAC tag for message. func ValidMAC(message, messageMAC, key []byte) bool { mac := hmac.New(sha256.New, key) mac.Write(message) expectedMAC := mac.Sum(nil) return hmac.Equal(messageMAC, expectedMAC) }*/
package hmacimport ()// FIPS 198-1:// https://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf// key is zero padded to the block size of the hash function// ipad = 0x36 byte repeated for key length// opad = 0x5c byte repeated for key length// hmac = H([key ^ opad] H([key ^ ipad] text))// marshalable is the combination of encoding.BinaryMarshaler and// encoding.BinaryUnmarshaler. Their method definitions are repeated here to// avoid a dependency on the encoding package.typemarshalableinterface {MarshalBinary() ([]byte, error)UnmarshalBinary([]byte) error}typehmacstruct {opad, ipad []byteouter, innerhash.Hash// If marshaled is true, then opad and ipad do not contain a padded // copy of the key, but rather the marshaled state of outer/inner after // opad/ipad has been fed into it.marshaledbool}func ( *hmac) ( []byte) []byte { := len() = .inner.Sum()if .marshaled {if := .outer.(marshalable).UnmarshalBinary(.opad); != nil {panic() } } else { .outer.Reset() .outer.Write(.opad) } .outer.Write([:])return .outer.Sum([:])}func ( *hmac) ( []byte) ( int, error) {return .inner.Write()}func ( *hmac) () int { return .outer.Size() }func ( *hmac) () int { return .inner.BlockSize() }func ( *hmac) () {if .marshaled {if := .inner.(marshalable).UnmarshalBinary(.ipad); != nil {panic() }return } .inner.Reset() .inner.Write(.ipad)// If the underlying hash is marshalable, we can save some time by // saving a copy of the hash state now, and restoring it on future // calls to Reset and Sum instead of writing ipad/opad every time. // // If either hash is unmarshalable for whatever reason, // it's safe to bail out here. , := .inner.(marshalable)if ! {return } , := .outer.(marshalable)if ! {return } , := .MarshalBinary()if != nil {return } .outer.Reset() .outer.Write(.opad) , := .MarshalBinary()if != nil {return }// Marshaling succeeded; save the marshaled state for later .ipad = .opad = .marshaled = true}// New returns a new HMAC hash using the given hash.Hash type and key.// New functions like sha256.New from crypto/sha256 can be used as h.// h must return a new Hash every time it is called.// Note that unlike other hash implementations in the standard library,// the returned Hash does not implement encoding.BinaryMarshaler// or encoding.BinaryUnmarshaler.func ( func() hash.Hash, []byte) hash.Hash {ifboring.Enabled { := boring.NewHMAC(, )if != nil {return }// BoringCrypto did not recognize h, so fall through to standard Go code. } := new(hmac) .outer = () .inner = () := truefunc() {deferfunc() {// The comparison might panic if the underlying types are not comparable. _ = recover() }()if .outer == .inner { = false } }()if ! {panic("crypto/hmac: hash generation function does not produce unique values") } := .inner.BlockSize() .ipad = make([]byte, ) .opad = make([]byte, )iflen() > {// If key is too big, hash it. .outer.Write() = .outer.Sum(nil) }copy(.ipad, )copy(.opad, )for := range .ipad { .ipad[] ^= 0x36 }for := range .opad { .opad[] ^= 0x5c } .inner.Write(.ipad)return}// Equal compares two MACs for equality without leaking timing information.func (, []byte) bool {// We don't have to be constant time if the lengths of the MACs are // different as that suggests that a completely different hash function // was used.returnsubtle.ConstantTimeCompare(, ) == 1}
The pages are generated with Goldsv0.6.7. (GOOS=linux GOARCH=amd64)
Golds is a Go 101 project developed by Tapir Liu.
PR and bug reports are welcome and can be submitted to the issue list.
Please follow @Go100and1 (reachable from the left QR code) to get the latest news of Golds.