// Copyright 2019 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.package mathimportfunc ( uint64) uint64 {if == 0 {return1 }return0// branchless: // return ((x>>1 | x&1) - 1) >> 63}func ( uint64) uint64 {if != 0 {return1 }return0// branchless: // return 1 - ((x>>1|x&1)-1)>>63}func (, uint64, uint) (, uint64) { = << | >>(64-) | <<(-64) = << return}func (, uint64, uint) (, uint64) { = >> | <<(64-) | >>(-64) = >> return}// shrcompress compresses the bottom n+1 bits of the two-word// value into a single bit. the result is equal to the value// shifted to the right by n, except the result's 0th bit is// set to the bitwise OR of the bottom n+1 bits.func (, uint64, uint) (, uint64) {// TODO: Performance here is really sensitive to the // order/placement of these branches. n == 0 is common // enough to be in the fast path. Perhaps more measurement // needs to be done to find the optimal order/placement?switch {case == 0:return , case == 64:return0, | nonzero()case >= 128:return0, nonzero( | )case < 64: , = shr(, , ) |= nonzero( & (1<< - 1))case < 128: , = shr(, , ) |= nonzero(&(1<<(-64)-1) | ) }return}func (, uint64) ( int32) { = int32(bits.LeadingZeros64())if == 64 { += int32(bits.LeadingZeros64()) }return}// split splits b into sign, biased exponent, and mantissa.// It adds the implicit 1 bit to the mantissa for normal values,// and normalizes subnormal values.func ( uint64) ( uint32, int32, uint64) { = uint32( >> 63) = int32(>>52) & mask = & fracMaskif == 0 {// Normalize value if subnormal. := uint(bits.LeadingZeros64() - 11) <<= = 1 - int32() } else {// Add implicit 1 bit |= 1 << 52 }return}// FMA returns x * y + z, computed with only one rounding.// (That is, FMA returns the fused multiply-add of x, y, and z.)func (, , float64) float64 { , , := Float64bits(), Float64bits(), Float64bits()// Inf or NaN or zero involved. At most one rounding will occur.if == 0.0 || == 0.0 || == 0.0 || &uvinf == uvinf || &uvinf == uvinf {return * + }// Handle non-finite z separately. Evaluating x*y+z where // x and y are finite, but z is infinite, should always result in z.if &uvinf == uvinf {return }// Inputs are (sub)normal. // Split x, y, z into sign, exponent, mantissa. , , := split() , , := split() , , := split()// Compute product p = x*y as sign, exponent, two-word mantissa. // Start with exponent. "is normal" bit isn't subtracted yet. := + - bias + 1// pm1:pm2 is the double-word mantissa for the product p. // Shift left to leave top bit in product. Effectively // shifts the 106-bit product to the left by 21. , := bits.Mul64(<<10, <<11) , := <<10, uint64(0) := ^ // product sign// normalize to 62nd bit := uint((^ >> 62) & 1) , = shl(, , ) -= int32()// Swap addition operands so |p| >= |z|if < || == && < { , , , , , , , = , , , , , , , }// Special case: if p == -z the result is always +0 since neither operand is zero.if != && == && == && == {return0 }// Align significands , = shrcompress(, , uint(-))// Compute resulting significands, normalizing if necessary.var , uint64if == {// Adding (pm1:pm2) + (zm1:zm2) , = bits.Add64(, , 0) , _ = bits.Add64(, , ) -= int32(^ >> 63) , = shrcompress(, , uint(64+>>63)) } else {// Subtracting (pm1:pm2) - (zm1:zm2) // TODO: should we special-case cancellation? , = bits.Sub64(, , 0) , _ = bits.Sub64(, , ) := lz(, ) -= , = shl(, , uint(-1)) |= nonzero() }// Round and break ties to evenif > 1022+bias || == 1022+bias && (+1<<9)>>63 == 1 {// rounded value overflows exponent rangereturnFloat64frombits(uint64()<<63 | uvinf) }if < 0 { := uint(-) = >> | nonzero(&(1<<-1)) = 0 } = (( + 1<<9) >> 10) & ^zero((&(1<<10-1))^1<<9) &= -int32(nonzero())returnFloat64frombits(uint64()<<63 + uint64()<<52 + )}
The pages are generated with Goldsv0.6.7. (GOOS=linux GOARCH=amd64)
Golds is a Go 101 project developed by Tapir Liu.
PR and bug reports are welcome and can be submitted to the issue list.
Please follow @Go100and1 (reachable from the left QR code) to get the latest news of Golds.