math/big.Int.Mul (method)

67 uses

	math/big (current package)
		int.go#L184: func (z *Int) Mul(x, y *Int) *Int {
		int.go#L257: 		z.Mul(z, t.Sub(&N, &i))
		int.go#L722: 	t.Mul(A, t)
		int.go#L723: 	s.Mul(B, s)
		int.go#L730: 	r.Mul(A, r)
		int.go#L731: 	q.Mul(B, q)
		int.go#L747: 		s.Mul(Ub, q)
		int.go#L841: 				t.Mul(Ua, t)
		int.go#L842: 				s.Mul(Ub, s)
		int.go#L862: 		y.Mul(a, Ua) // y can safely alias a
		int.go#L1019: 	beta := new(Int).Mul(alpha, alpha)
		int.go#L1021: 	beta.Mul(beta, tx)
		int.go#L1024: 	beta.Mul(beta, x)
		int.go#L1026: 	beta.Mul(beta, alpha)
		int.go#L1063: 			t.Mul(&t, &t).Mod(&t, p)
		int.go#L1073: 		g.Mul(&t, &t).Mod(&g, p) // g = g^(2^(r-m)) mod p
		int.go#L1074: 		y.Mul(&y, &t).Mod(&y, p)
		int.go#L1075: 		b.Mul(&b, &g).Mod(&b, p)
		rat.go#L524: 	z.a.Mul(&x.a, &y.a)

	crypto/dsa
		dsa.go#L247: 		s = new(big.Int).Mul(priv.X, r)
		dsa.go#L250: 		s.Mul(s, kInv)
		dsa.go#L298: 	u1 := new(big.Int).Mul(z, w)
		dsa.go#L300: 	u2 := w.Mul(r, w)
		dsa.go#L304: 	v.Mul(v, u2)

	crypto/ecdsa
		ecdsa_legacy.go#L103: 		s = new(big.Int).Mul(priv.D, r)
		ecdsa_legacy.go#L105: 		s.Mul(s, kInv)
		ecdsa_legacy.go#L150: 	u1 := e.Mul(e, w)
		ecdsa_legacy.go#L152: 	u2 := w.Mul(r, w)

	crypto/elliptic
		params.go#L37: 	x3 := new(big.Int).Mul(x, x)
		params.go#L38: 	x3.Mul(x3, x)
		params.go#L69: 	y2 := new(big.Int).Mul(y, y)
		params.go#L94: 	zinvsq := new(big.Int).Mul(zinv, zinv)
		params.go#L96: 	xOut = new(big.Int).Mul(x, zinvsq)
		params.go#L98: 	zinvsq.Mul(zinvsq, zinv)
		params.go#L99: 	yOut = new(big.Int).Mul(y, zinvsq)
		params.go#L142: 	z1z1 := new(big.Int).Mul(z1, z1)
		params.go#L144: 	z2z2 := new(big.Int).Mul(z2, z2)
		params.go#L147: 	u1 := new(big.Int).Mul(x1, z2z2)
		params.go#L149: 	u2 := new(big.Int).Mul(x2, z1z1)
		params.go#L157: 	i.Mul(i, i)
		params.go#L158: 	j := new(big.Int).Mul(h, i)
		params.go#L160: 	s1 := new(big.Int).Mul(y1, z2)
		params.go#L161: 	s1.Mul(s1, z2z2)
		params.go#L163: 	s2 := new(big.Int).Mul(y2, z1)
		params.go#L164: 	s2.Mul(s2, z1z1)
		params.go#L175: 	v := new(big.Int).Mul(u1, i)
		params.go#L178: 	x3.Mul(x3, x3)
		params.go#L186: 	y3.Mul(y3, v)
		params.go#L187: 	s1.Mul(s1, j)
		params.go#L193: 	z3.Mul(z3, z3)
		params.go#L196: 	z3.Mul(z3, h)
		params.go#L224: 	delta := new(big.Int).Mul(z, z)
		params.go#L226: 	gamma := new(big.Int).Mul(y, y)
		params.go#L233: 	alpha.Mul(alpha, alpha2)
		params.go#L238: 	beta := alpha2.Mul(x, gamma)
		params.go#L240: 	x3 := new(big.Int).Mul(alpha, alpha)
		params.go#L250: 	z3.Mul(z3, z3)
		params.go#L266: 	y3 := alpha.Mul(alpha, beta)
		params.go#L268: 	gamma.Mul(gamma, gamma)

	crypto/rsa
		rsa.go#L242: 		modulus.Mul(modulus, prime)
		rsa.go#L255: 	de.Mul(de, priv.D)
		rsa.go#L412: 			n.Mul(n, prime)
		rsa.go#L414: 			totient.Mul(totient, pminus1)
		rsa.go#L619: 	r := new(big.Int).Mul(priv.Primes[0], priv.Primes[1])
		rsa.go#L631: 		r.Mul(r, prime)

	github.com/gotd/td/internal/crypto/srp
		hash.go#L50: 	kv := k.Mul(k, v).Mod(k, p)
		hash.go#L59: 	sa, ok := s.pad256FromBig(s.bigExp(t, u.Mul(u, x).Add(u, a), p))