Source File
sigqueue.go
Belonging Package
runtime
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements runtime support for signal handling.
//
// Most synchronization primitives are not available from
// the signal handler (it cannot block, allocate memory, or use locks)
// so the handler communicates with a processing goroutine
// via struct sig, below.
//
// sigsend is called by the signal handler to queue a new signal.
// signal_recv is called by the Go program to receive a newly queued signal.
//
// Synchronization between sigsend and signal_recv is based on the sig.state
// variable. It can be in three states:
// * sigReceiving means that signal_recv is blocked on sig.Note and there are
// no new pending signals.
// * sigSending means that sig.mask *may* contain new pending signals,
// signal_recv can't be blocked in this state.
// * sigIdle means that there are no new pending signals and signal_recv is not
// blocked.
//
// Transitions between states are done atomically with CAS.
//
// When signal_recv is unblocked, it resets sig.Note and rechecks sig.mask.
// If several sigsends and signal_recv execute concurrently, it can lead to
// unnecessary rechecks of sig.mask, but it cannot lead to missed signals
// nor deadlocks.
//go:build !plan9
package runtime
import (
_ // for go:linkname
)
// sig handles communication between the signal handler and os/signal.
// Other than the inuse and recv fields, the fields are accessed atomically.
//
// The wanted and ignored fields are only written by one goroutine at
// a time; access is controlled by the handlers Mutex in os/signal.
// The fields are only read by that one goroutine and by the signal handler.
// We access them atomically to minimize the race between setting them
// in the goroutine calling os/signal and the signal handler,
// which may be running in a different thread. That race is unavoidable,
// as there is no connection between handling a signal and receiving one,
// but atomic instructions should minimize it.
var sig struct {
note note
mask [(_NSIG + 31) / 32]uint32
wanted [(_NSIG + 31) / 32]uint32
ignored [(_NSIG + 31) / 32]uint32
recv [(_NSIG + 31) / 32]uint32
state atomic.Uint32
delivering atomic.Uint32
inuse bool
}
const (
sigIdle = iota
sigReceiving
sigSending
)
// sigsend delivers a signal from sighandler to the internal signal delivery queue.
// It reports whether the signal was sent. If not, the caller typically crashes the program.
// It runs from the signal handler, so it's limited in what it can do.
func ( uint32) bool {
:= uint32(1) << uint(&31)
if >= uint32(32*len(sig.wanted)) {
return false
}
sig.delivering.Add(1)
// We are running in the signal handler; defer is not available.
if := atomic.Load(&sig.wanted[/32]); & == 0 {
sig.delivering.Add(-1)
return false
}
// Add signal to outgoing queue.
for {
:= sig.mask[/32]
if & != 0 {
sig.delivering.Add(-1)
return true // signal already in queue
}
if atomic.Cas(&sig.mask[/32], , |) {
break
}
}
// Notify receiver that queue has new bit.
:
for {
switch sig.state.Load() {
default:
throw("sigsend: inconsistent state")
case sigIdle:
if sig.state.CompareAndSwap(sigIdle, sigSending) {
break
}
case sigSending:
// notification already pending
break
case sigReceiving:
if sig.state.CompareAndSwap(sigReceiving, sigIdle) {
if GOOS == "darwin" || GOOS == "ios" {
sigNoteWakeup(&sig.note)
break
}
notewakeup(&sig.note)
break
}
}
}
sig.delivering.Add(-1)
return true
}
// Called to receive the next queued signal.
// Must only be called from a single goroutine at a time.
//
//go:linkname signal_recv os/signal.signal_recv
func () uint32 {
for {
// Serve any signals from local copy.
for := uint32(0); < _NSIG; ++ {
if sig.recv[/32]&(1<<(&31)) != 0 {
sig.recv[/32] &^= 1 << ( & 31)
return
}
}
// Wait for updates to be available from signal sender.
:
for {
switch sig.state.Load() {
default:
throw("signal_recv: inconsistent state")
case sigIdle:
if sig.state.CompareAndSwap(sigIdle, sigReceiving) {
if GOOS == "darwin" || GOOS == "ios" {
sigNoteSleep(&sig.note)
break
}
notetsleepg(&sig.note, -1)
noteclear(&sig.note)
break
}
case sigSending:
if sig.state.CompareAndSwap(sigSending, sigIdle) {
break
}
}
}
// Incorporate updates from sender into local copy.
for := range sig.mask {
sig.recv[] = atomic.Xchg(&sig.mask[], 0)
}
}
}
// signalWaitUntilIdle waits until the signal delivery mechanism is idle.
// This is used to ensure that we do not drop a signal notification due
// to a race between disabling a signal and receiving a signal.
// This assumes that signal delivery has already been disabled for
// the signal(s) in question, and here we are just waiting to make sure
// that all the signals have been delivered to the user channels
// by the os/signal package.
//
//go:linkname signalWaitUntilIdle os/signal.signalWaitUntilIdle
func () {
// Although the signals we care about have been removed from
// sig.wanted, it is possible that another thread has received
// a signal, has read from sig.wanted, is now updating sig.mask,
// and has not yet woken up the processor thread. We need to wait
// until all current signal deliveries have completed.
for sig.delivering.Load() != 0 {
Gosched()
}
// Although WaitUntilIdle seems like the right name for this
// function, the state we are looking for is sigReceiving, not
// sigIdle. The sigIdle state is really more like sigProcessing.
for sig.state.Load() != sigReceiving {
Gosched()
}
}
// Must only be called from a single goroutine at a time.
//
//go:linkname signal_enable os/signal.signal_enable
func ( uint32) {
if !sig.inuse {
// This is the first call to signal_enable. Initialize.
sig.inuse = true // enable reception of signals; cannot disable
if GOOS == "darwin" || GOOS == "ios" {
sigNoteSetup(&sig.note)
} else {
noteclear(&sig.note)
}
}
if >= uint32(len(sig.wanted)*32) {
return
}
:= sig.wanted[/32]
|= 1 << ( & 31)
atomic.Store(&sig.wanted[/32], )
:= sig.ignored[/32]
&^= 1 << ( & 31)
atomic.Store(&sig.ignored[/32], )
sigenable()
}
// Must only be called from a single goroutine at a time.
//
//go:linkname signal_disable os/signal.signal_disable
func ( uint32) {
if >= uint32(len(sig.wanted)*32) {
return
}
sigdisable()
:= sig.wanted[/32]
&^= 1 << ( & 31)
atomic.Store(&sig.wanted[/32], )
}
// Must only be called from a single goroutine at a time.
//
//go:linkname signal_ignore os/signal.signal_ignore
func ( uint32) {
if >= uint32(len(sig.wanted)*32) {
return
}
sigignore()
:= sig.wanted[/32]
&^= 1 << ( & 31)
atomic.Store(&sig.wanted[/32], )
:= sig.ignored[/32]
|= 1 << ( & 31)
atomic.Store(&sig.ignored[/32], )
}
// sigInitIgnored marks the signal as already ignored. This is called at
// program start by initsig. In a shared library initsig is called by
// libpreinit, so the runtime may not be initialized yet.
//
//go:nosplit
func ( uint32) {
:= sig.ignored[/32]
|= 1 << ( & 31)
atomic.Store(&sig.ignored[/32], )
}
// Checked by signal handlers.
//
//go:linkname signal_ignored os/signal.signal_ignored
func ( uint32) bool {
:= atomic.Load(&sig.ignored[/32])
return &(1<<(&31)) != 0
}
The pages are generated with Golds v0.6.7. (GOOS=linux GOARCH=amd64) Golds is a Go 101 project developed by Tapir Liu. PR and bug reports are welcome and can be submitted to the issue list. Please follow @Go100and1 (reachable from the left QR code) to get the latest news of Golds. |