// Copyright 2014 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.package runtimeimport ()// Frames may be used to get function/file/line information for a// slice of PC values returned by Callers.typeFramesstruct {// callers is a slice of PCs that have not yet been expanded to frames.callers []uintptr// frames is a slice of Frames that have yet to be returned.frames []FrameframeStore [2]Frame}// Frame is the information returned by Frames for each call frame.typeFramestruct {// PC is the program counter for the location in this frame. // For a frame that calls another frame, this will be the // program counter of a call instruction. Because of inlining, // multiple frames may have the same PC value, but different // symbolic information.PCuintptr// Func is the Func value of this call frame. This may be nil // for non-Go code or fully inlined functions.Func *Func// Function is the package path-qualified function name of // this call frame. If non-empty, this string uniquely // identifies a single function in the program. // This may be the empty string if not known. // If Func is not nil then Function == Func.Name().Functionstring// File and Line are the file name and line number of the // location in this frame. For non-leaf frames, this will be // the location of a call. These may be the empty string and // zero, respectively, if not known.FilestringLineint// startLine is the line number of the beginning of the function in // this frame. Specifically, it is the line number of the func keyword // for Go functions. Note that //line directives can change the // filename and/or line number arbitrarily within a function, meaning // that the Line - startLine offset is not always meaningful. // // This may be zero if not known.startLineint// Entry point program counter for the function; may be zero // if not known. If Func is not nil then Entry == // Func.Entry().Entryuintptr// The runtime's internal view of the function. This field // is set (funcInfo.valid() returns true) only for Go functions, // not for C functions.funcInfofuncInfo}// CallersFrames takes a slice of PC values returned by Callers and// prepares to return function/file/line information.// Do not change the slice until you are done with the Frames.func ( []uintptr) *Frames { := &Frames{callers: } .frames = .frameStore[:0]return}// Next returns a Frame representing the next call frame in the slice// of PC values. If it has already returned all call frames, Next// returns a zero Frame.//// The more result indicates whether the next call to Next will return// a valid Frame. It does not necessarily indicate whether this call// returned one.//// See the Frames example for idiomatic usage.func ( *Frames) () ( Frame, bool) {forlen(.frames) < 2 {// Find the next frame. // We need to look for 2 frames so we know what // to return for the "more" result.iflen(.callers) == 0 {break } := .callers[0] .callers = .callers[1:] := findfunc()if !.valid() {ifcgoSymbolizer != nil {// Pre-expand cgo frames. We could do this // incrementally, too, but there's no way to // avoid allocation in this case anyway. .frames = append(.frames, expandCgoFrames()...) }continue } := ._Func() := .Entry()if > {// We store the pc of the start of the instruction following // the instruction in question (the call or the inline mark). // This is done for historical reasons, and to make FuncForPC // work correctly for entries in the result of runtime.Callers. -- }// It's important that interpret pc non-strictly as cgoTraceback may // have added bogus PCs with a valid funcInfo but invalid PCDATA. , := newInlineUnwinder(, , nil) := .srcFunc()if .isInlined() {// Note: entry is not modified. It always refers to a real frame, not an inlined one. // File/line from funcline1 below are already correct. = nil } .frames = append(.frames, Frame{PC: ,Func: ,Function: funcNameForPrint(.name()),Entry: ,startLine: int(.startLine),funcInfo: ,// Note: File,Line set below }) }// Pop one frame from the frame list. Keep the rest. // Avoid allocation in the common case, which is 1 or 2 frames.switchlen(.frames) {case0: // In the rare case when there are no frames at all, we return Frame{}.returncase1: = .frames[0] .frames = .frameStore[:0]case2: = .frames[0] .frameStore[0] = .frames[1] .frames = .frameStore[:1]default: = .frames[0] .frames = .frames[1:] } = len(.frames) > 0if .funcInfo.valid() {// Compute file/line just before we need to return it, // as it can be expensive. This avoids computing file/line // for the Frame we find but don't return. See issue 32093. , := funcline1(.funcInfo, .PC, false) .File, .Line = , int() }return}// runtime_FrameStartLine returns the start line of the function in a Frame.////go:linkname runtime_FrameStartLine runtime/pprof.runtime_FrameStartLinefunc ( *Frame) int {return .startLine}// runtime_FrameSymbolName returns the full symbol name of the function in a Frame.// For generic functions this differs from f.Function in that this doesn't replace// the shape name to "...".////go:linkname runtime_FrameSymbolName runtime/pprof.runtime_FrameSymbolNamefunc ( *Frame) string {if !.funcInfo.valid() {return .Function } , := newInlineUnwinder(.funcInfo, .PC, nil) := .srcFunc()return .name()}// runtime_expandFinalInlineFrame expands the final pc in stk to include all// "callers" if pc is inline.////go:linkname runtime_expandFinalInlineFrame runtime/pprof.runtime_expandFinalInlineFramefunc ( []uintptr) []uintptr {// TODO: It would be more efficient to report only physical PCs to pprof and // just expand the whole stack.iflen() == 0 {return } := [len()-1] := - 1 := findfunc()if !.valid() {// Not a Go function.return }varpcvalueCache , := newInlineUnwinder(, , &)if !.isInlined() {// Nothing inline at tracepc.return }// Treat the previous func as normal. We haven't actually checked, but // since this pc was included in the stack, we know it shouldn't be // elided. := abi.FuncIDNormal// Remove pc from stk; we'll re-add it below. = [:len()-1]for ; .valid(); = .next() { := .srcFunc().funcIDif == abi.FuncIDWrapper && elideWrapperCalling() {// ignore wrappers } else { = append(, .pc+1) } = }return}// expandCgoFrames expands frame information for pc, known to be// a non-Go function, using the cgoSymbolizer hook. expandCgoFrames// returns nil if pc could not be expanded.func ( uintptr) []Frame { := cgoSymbolizerArg{pc: }callCgoSymbolizer(&)if .file == nil && .funcName == nil {// No useful information from symbolizer.returnnil }var []Framefor { = append(, Frame{PC: ,Func: nil,Function: gostring(.funcName),File: gostring(.file),Line: int(.lineno),Entry: .entry,// funcInfo is zero, which implies !funcInfo.valid(). // That ensures that we use the File/Line info given here. })if .more == 0 {break }callCgoSymbolizer(&) }// No more frames for this PC. Tell the symbolizer we are done. // We don't try to maintain a single cgoSymbolizerArg for the // whole use of Frames, because there would be no good way to tell // the symbolizer when we are done. .pc = 0callCgoSymbolizer(&)return}// NOTE: Func does not expose the actual unexported fields, because we return *Func// values to users, and we want to keep them from being able to overwrite the data// with (say) *f = Func{}.// All code operating on a *Func must call raw() to get the *_func// or funcInfo() to get the funcInfo instead.// A Func represents a Go function in the running binary.typeFuncstruct {opaquestruct{} // unexported field to disallow conversions}func ( *Func) () *_func {return (*_func)(unsafe.Pointer())}func ( *Func) () funcInfo {return .raw().funcInfo()}func ( *_func) () funcInfo {// Find the module containing fn. fn is located in the pclntable. // The unsafe.Pointer to uintptr conversions and arithmetic // are safe because we are working with module addresses. := uintptr(unsafe.Pointer())var *moduledatafor := &firstmoduledata; != nil; = .next {iflen(.pclntable) == 0 {continue } := uintptr(unsafe.Pointer(&.pclntable[0]))if <= && < +uintptr(len(.pclntable)) { = break } }returnfuncInfo{, }}// pcHeader holds data used by the pclntab lookups.typepcHeaderstruct {magicuint32// 0xFFFFFFF1pad1, pad2uint8// 0,0minLCuint8// min instruction sizeptrSizeuint8// size of a ptr in bytesnfuncint// number of functions in the modulenfilesuint// number of entries in the file tabtextStartuintptr// base for function entry PC offsets in this module, equal to moduledata.textfuncnameOffsetuintptr// offset to the funcnametab variable from pcHeadercuOffsetuintptr// offset to the cutab variable from pcHeaderfiletabOffsetuintptr// offset to the filetab variable from pcHeaderpctabOffsetuintptr// offset to the pctab variable from pcHeaderpclnOffsetuintptr// offset to the pclntab variable from pcHeader}// moduledata records information about the layout of the executable// image. It is written by the linker. Any changes here must be// matched changes to the code in cmd/link/internal/ld/symtab.go:symtab.// moduledata is stored in statically allocated non-pointer memory;// none of the pointers here are visible to the garbage collector.typemoduledatastruct {sys.NotInHeap// Only in static datapcHeader *pcHeaderfuncnametab []bytecutab []uint32filetab []bytepctab []bytepclntable []byteftab []functabfindfunctabuintptrminpc, maxpcuintptrtext, etextuintptrnoptrdata, enoptrdatauintptrdata, edatauintptrbss, ebssuintptrnoptrbss, enoptrbssuintptrcovctrs, ecovctrsuintptrend, gcdata, gcbssuintptrtypes, etypesuintptrrodatauintptrgofuncuintptr// go.func.*textsectmap []textsecttypelinks []int32// offsets from typesitablinks []*itabptab []ptabEntrypluginpathstringpkghashes []modulehash// This slice records the initializing tasks that need to be // done to start up the program. It is built by the linker.inittasks []*initTaskmodulenamestringmodulehashes []modulehashhasmainuint8// 1 if module contains the main function, 0 otherwisegcdatamask, gcbssmaskbitvectortypemapmap[typeOff]*_type// offset to *_rtype in previous modulebadbool// module failed to load and should be ignorednext *moduledata}// A modulehash is used to compare the ABI of a new module or a// package in a new module with the loaded program.//// For each shared library a module links against, the linker creates an entry in the// moduledata.modulehashes slice containing the name of the module, the abi hash seen// at link time and a pointer to the runtime abi hash. These are checked in// moduledataverify1 below.//// For each loaded plugin, the pkghashes slice has a modulehash of the// newly loaded package that can be used to check the plugin's version of// a package against any previously loaded version of the package.// This is done in plugin.lastmoduleinit.typemodulehashstruct {modulenamestringlinktimehashstringruntimehash *string}// pinnedTypemaps are the map[typeOff]*_type from the moduledata objects.//// These typemap objects are allocated at run time on the heap, but the// only direct reference to them is in the moduledata, created by the// linker and marked SNOPTRDATA so it is ignored by the GC.//// To make sure the map isn't collected, we keep a second reference here.varpinnedTypemaps []map[typeOff]*_typevarfirstmoduledatamoduledata// linker symbolvarlastmoduledatap *moduledata// linker symbolvarmodulesSlice *[]*moduledata// see activeModules// activeModules returns a slice of active modules.//// A module is active once its gcdatamask and gcbssmask have been// assembled and it is usable by the GC.//// This is nosplit/nowritebarrier because it is called by the// cgo pointer checking code.////go:nosplit//go:nowritebarrierfunc () []*moduledata { := (*[]*moduledata)(atomic.Loadp(unsafe.Pointer(&modulesSlice)))if == nil {returnnil }return *}// modulesinit creates the active modules slice out of all loaded modules.//// When a module is first loaded by the dynamic linker, an .init_array// function (written by cmd/link) is invoked to call addmoduledata,// appending to the module to the linked list that starts with// firstmoduledata.//// There are two times this can happen in the lifecycle of a Go// program. First, if compiled with -linkshared, a number of modules// built with -buildmode=shared can be loaded at program initialization.// Second, a Go program can load a module while running that was built// with -buildmode=plugin.//// After loading, this function is called which initializes the// moduledata so it is usable by the GC and creates a new activeModules// list.//// Only one goroutine may call modulesinit at a time.func () { := new([]*moduledata)for := &firstmoduledata; != nil; = .next {if .bad {continue } * = append(*, )if .gcdatamask == (bitvector{}) { := .edata - .data .gcdatamask = progToPointerMask((*byte)(unsafe.Pointer(.gcdata)), ) := .ebss - .bss .gcbssmask = progToPointerMask((*byte)(unsafe.Pointer(.gcbss)), )gcController.addGlobals(int64( + )) } }// Modules appear in the moduledata linked list in the order they are // loaded by the dynamic loader, with one exception: the // firstmoduledata itself the module that contains the runtime. This // is not always the first module (when using -buildmode=shared, it // is typically libstd.so, the second module). The order matters for // typelinksinit, so we swap the first module with whatever module // contains the main function. // // See Issue #18729.for , := range * {if .hasmain != 0 { (*)[0] = (*)[] = &firstmoduledatabreak } }atomicstorep(unsafe.Pointer(&modulesSlice), unsafe.Pointer())}typefunctabstruct {entryoffuint32// relative to runtime.textfuncoffuint32}// Mapping information for secondary text sectionstypetextsectstruct {vaddruintptr// prelinked section vaddrenduintptr// vaddr + section lengthbaseaddruintptr// relocated section address}constminfunc = 16// minimum function sizeconstpcbucketsize = 256 * minfunc// size of bucket in the pc->func lookup table// findfuncbucket is an array of these structures.// Each bucket represents 4096 bytes of the text segment.// Each subbucket represents 256 bytes of the text segment.// To find a function given a pc, locate the bucket and subbucket for// that pc. Add together the idx and subbucket value to obtain a// function index. Then scan the functab array starting at that// index to find the target function.// This table uses 20 bytes for every 4096 bytes of code, or ~0.5% overhead.typefindfuncbucketstruct {idxuint32subbuckets [16]byte}func () {for := &firstmoduledata; != nil; = .next {moduledataverify1() }}constdebugPcln = falsefunc ( *moduledata) {// Check that the pclntab's format is valid. := .pcHeaderif .magic != 0xfffffff1 || .pad1 != 0 || .pad2 != 0 || .minLC != sys.PCQuantum || .ptrSize != goarch.PtrSize || .textStart != .text {println("runtime: pcHeader: magic=", hex(.magic), "pad1=", .pad1, "pad2=", .pad2,"minLC=", .minLC, "ptrSize=", .ptrSize, "pcHeader.textStart=", hex(.textStart),"text=", hex(.text), "pluginpath=", .pluginpath)throw("invalid function symbol table") }// ftab is lookup table for function by program counter. := len(.ftab) - 1for := 0; < ; ++ {// NOTE: ftab[nftab].entry is legal; it is the address beyond the final function.if .ftab[].entryoff > .ftab[+1].entryoff { := funcInfo{(*_func)(unsafe.Pointer(&.pclntable[.ftab[].funcoff])), } := funcInfo{(*_func)(unsafe.Pointer(&.pclntable[.ftab[+1].funcoff])), } := "end"if +1 < { = funcname() }println("function symbol table not sorted by PC offset:", hex(.ftab[].entryoff), funcname(), ">", hex(.ftab[+1].entryoff), , ", plugin:", .pluginpath)for := 0; <= ; ++ {println("\t", hex(.ftab[].entryoff), funcname(funcInfo{(*_func)(unsafe.Pointer(&.pclntable[.ftab[].funcoff])), })) }ifGOOS == "aix" && isarchive {println("-Wl,-bnoobjreorder is mandatory on aix/ppc64 with c-archive") }throw("invalid runtime symbol table") } } := .textAddr(.ftab[0].entryoff) := .textAddr(.ftab[].entryoff)if .minpc != || .maxpc != {println("minpc=", hex(.minpc), "min=", hex(), "maxpc=", hex(.maxpc), "max=", hex())throw("minpc or maxpc invalid") }for , := range .modulehashes {if .linktimehash != *.runtimehash {println("abi mismatch detected between", .modulename, "and", .modulename)throw("abi mismatch") } }}// textAddr returns md.text + off, with special handling for multiple text sections.// off is a (virtual) offset computed at internal linking time,// before the external linker adjusts the sections' base addresses.//// The text, or instruction stream is generated as one large buffer.// The off (offset) for a function is its offset within this buffer.// If the total text size gets too large, there can be issues on platforms like ppc64// if the target of calls are too far for the call instruction.// To resolve the large text issue, the text is split into multiple text sections// to allow the linker to generate long calls when necessary.// When this happens, the vaddr for each text section is set to its offset within the text.// Each function's offset is compared against the section vaddrs and ends to determine the containing section.// Then the section relative offset is added to the section's// relocated baseaddr to compute the function address.//// It is nosplit because it is part of the findfunc implementation.////go:nosplitfunc ( *moduledata) ( uint32) uintptr { := uintptr() := .text + iflen(.textsectmap) > 1 {for , := range .textsectmap {// For the last section, include the end address (etext), as it is included in the functab.if >= .vaddr && < .end || ( == len(.textsectmap)-1 && == .end) { = .baseaddr + - .vaddrbreak } }if > .etext && GOARCH != "wasm" { // on wasm, functions do not live in the same address space as the linear memoryprintln("runtime: textAddr", hex(), "out of range", hex(.text), "-", hex(.etext))throw("runtime: text offset out of range") } }return}// textOff is the opposite of textAddr. It converts a PC to a (virtual) offset// to md.text, and returns if the PC is in any Go text section.//// It is nosplit because it is part of the findfunc implementation.////go:nosplitfunc ( *moduledata) ( uintptr) (uint32, bool) { := uint32( - .text)iflen(.textsectmap) > 1 {for , := range .textsectmap {if .baseaddr > {// pc is not in any section.return0, false } := .baseaddr + (.end - .vaddr)// For the last section, include the end address (etext), as it is included in the functab.if == len(.textsectmap) { ++ }if < { = uint32( - .baseaddr + .vaddr)break } } }return , true}// funcName returns the string at nameOff in the function name table.func ( *moduledata) ( int32) string {if == 0 {return"" }returngostringnocopy(&.funcnametab[])}// FuncForPC returns a *Func describing the function that contains the// given program counter address, or else nil.//// If pc represents multiple functions because of inlining, it returns// the *Func describing the innermost function, but with an entry of// the outermost function.func ( uintptr) *Func { := findfunc()if !.valid() {returnnil }// This must interpret PC non-strictly so bad PCs (those between functions) don't crash the runtime. // We just report the preceding function in that situation. See issue 29735. // TODO: Perhaps we should report no function at all in that case. // The runtime currently doesn't have function end info, alas. , := newInlineUnwinder(, , nil)if !.isInlined() {return ._Func() } := .srcFunc() , := .fileLine() := &funcinl{ones: ^uint32(0),entry: .entry(), // entry of the real (the outermost) function.name: .name(),file: ,line: int32(),startLine: .startLine, }return (*Func)(unsafe.Pointer())}// Name returns the name of the function.func ( *Func) () string {if == nil {return"" } := .raw()if .isInlined() { // inlined version := (*funcinl)(unsafe.Pointer())returnfuncNameForPrint(.name) }returnfuncNameForPrint(funcname(.funcInfo()))}// Entry returns the entry address of the function.func ( *Func) () uintptr { := .raw()if .isInlined() { // inlined version := (*funcinl)(unsafe.Pointer())return .entry }return .funcInfo().entry()}// FileLine returns the file name and line number of the// source code corresponding to the program counter pc.// The result will not be accurate if pc is not a program// counter within f.func ( *Func) ( uintptr) ( string, int) { := .raw()if .isInlined() { // inlined version := (*funcinl)(unsafe.Pointer())return .file, int(.line) }// Pass strict=false here, because anyone can call this function, // and they might just be wrong about targetpc belonging to f. , := funcline1(.funcInfo(), , false)return , int()}// startLine returns the starting line number of the function. i.e., the line// number of the func keyword.func ( *Func) () int32 { := .raw()if .isInlined() { // inlined version := (*funcinl)(unsafe.Pointer())return .startLine }return .funcInfo().startLine}// findmoduledatap looks up the moduledata for a PC.//// It is nosplit because it's part of the isgoexception// implementation.////go:nosplitfunc ( uintptr) *moduledata {for := &firstmoduledata; != nil; = .next {if .minpc <= && < .maxpc {return } }returnnil}typefuncInfostruct { *_funcdatap *moduledata}func ( funcInfo) () bool {return ._func != nil}func ( funcInfo) () *Func {return (*Func)(unsafe.Pointer(._func))}// isInlined reports whether f should be re-interpreted as a *funcinl.func ( *_func) () bool {return .entryOff == ^uint32(0) // see comment for funcinl.ones}// entry returns the entry PC for f.func ( funcInfo) () uintptr {return .datap.textAddr(.entryOff)}// findfunc looks up function metadata for a PC.//// It is nosplit because it's part of the isgoexception// implementation.////go:nosplitfunc ( uintptr) funcInfo { := findmoduledatap()if == nil {returnfuncInfo{} }const = uintptr(len(findfuncbucket{}.subbuckets)) , := .textOff()if ! {returnfuncInfo{} } := uintptr() + .text - .minpc// TODO: are datap.text and datap.minpc always equal? := / pcbucketsize := % pcbucketsize / (pcbucketsize / ) := (*findfuncbucket)(add(unsafe.Pointer(.findfunctab), *unsafe.Sizeof(findfuncbucket{}))) := .idx + uint32(.subbuckets[])// Find the ftab entry.for .ftab[+1].entryoff <= { ++ } := .ftab[].funcoffreturnfuncInfo{(*_func)(unsafe.Pointer(&.pclntable[])), }}// A srcFunc represents a logical function in the source code. This may// correspond to an actual symbol in the binary text, or it may correspond to a// source function that has been inlined.typesrcFuncstruct {datap *moduledatanameOffint32startLineint32funcIDabi.FuncID}func ( funcInfo) () srcFunc {if !.valid() {returnsrcFunc{} }returnsrcFunc{.datap, .nameOff, .startLine, .funcID}}func ( srcFunc) () string {if .datap == nil {return"" }return .datap.funcName(.nameOff)}typepcvalueCachestruct {entries [2][8]pcvalueCacheEnt}typepcvalueCacheEntstruct {// targetpc and off together are the key of this cache entry.targetpcuintptroffuint32// val is the value of this cached pcvalue entry.valint32}// pcvalueCacheKey returns the outermost index in a pcvalueCache to use for targetpc.// It must be very cheap to calculate.// For now, align to goarch.PtrSize and reduce mod the number of entries.// In practice, this appears to be fairly randomly and evenly distributed.func ( uintptr) uintptr {return ( / goarch.PtrSize) % uintptr(len(pcvalueCache{}.entries))}// Returns the PCData value, and the PC where this value starts.// TODO: the start PC is returned only when cache is nil.func ( funcInfo, uint32, uintptr, *pcvalueCache, bool) (int32, uintptr) {if == 0 {return -1, 0 }// Check the cache. This speeds up walks of deep stacks, which // tend to have the same recursive functions over and over. // // This cache is small enough that full associativity is // cheaper than doing the hashing for a less associative // cache.if != nil { := pcvalueCacheKey()for := range .entries[] {// We check off first because we're more // likely to have multiple entries with // different offsets for the same targetpc // than the other way around, so we'll usually // fail in the first clause. := &.entries[][]if .off == && .targetpc == {return .val, 0 } } }if !.valid() {if && panicking.Load() == 0 {println("runtime: no module data for", hex(.entry()))throw("no module data") }return -1, 0 } := .datap := .pctab[:] := .entry() := := int32(-1)for {varbool , = step(, &, &, == .entry())if ! {break }if < {// Replace a random entry in the cache. Random // replacement prevents a performance cliff if // a recursive stack's cycle is slightly // larger than the cache. // Put the new element at the beginning, // since it is the most likely to be newly used.if != nil { := pcvalueCacheKey() := &.entries[] := fastrandn(uint32(len(.entries[]))) [] = [0] [0] = pcvalueCacheEnt{targetpc: ,off: ,val: , } }return , } = }// If there was a table, it should have covered all program counters. // If not, something is wrong.ifpanicking.Load() != 0 || ! {return -1, 0 }print("runtime: invalid pc-encoded table f=", funcname(), " pc=", hex(), " targetpc=", hex(), " tab=", , "\n") = .pctab[:] = .entry() = -1for {varbool , = step(, &, &, == .entry())if ! {break }print("\tvalue=", , " until pc=", hex(), "\n") }throw("invalid runtime symbol table")return -1, 0}func ( funcInfo) string {if !.valid() {return"" }return .datap.funcName(.nameOff)}func ( funcInfo) string { := funcNameForPrint(funcname()) := len() - 1for ; > 0; -- {if [] == '/' {break } }for ; < len(); ++ {if [] == '.' {break } }return [:]}func ( funcInfo, int32) string { := .datapif !.valid() {return"?" }// Make sure the cu index and file offset are validif := .cutab[.cuOffset+uint32()]; != ^uint32(0) {returngostringnocopy(&.filetab[]) }// pcln section is corrupt.return"?"}func ( funcInfo, uintptr, bool) ( string, int32) { := .datapif !.valid() {return"?", 0 } , := pcvalue(, .pcfile, , nil, ) , _ = pcvalue(, .pcln, , nil, )if == -1 || == -1 || int() >= len(.filetab) {// print("looking for ", hex(targetpc), " in ", funcname(f), " got file=", fileno, " line=", lineno, "\n")return"?", 0 } = funcfile(, )return}func ( funcInfo, uintptr) ( string, int32) {returnfuncline1(, , true)}func ( funcInfo, uintptr, *pcvalueCache) int32 { , := pcvalue(, .pcsp, , , true)ifdebugPcln && &(goarch.PtrSize-1) != 0 {print("invalid spdelta ", funcname(), " ", hex(.entry()), " ", hex(), " ", hex(.pcsp), " ", , "\n")throw("bad spdelta") }return}// funcMaxSPDelta returns the maximum spdelta at any point in f.func ( funcInfo) int32 { := .datap := .pctab[.pcsp:] := .entry() := int32(-1) := int32(0)for {varbool , = step(, &, &, == .entry())if ! {return }if > { = } }}func ( funcInfo, uint32) uint32 {return *(*uint32)(add(unsafe.Pointer(&.nfuncdata), unsafe.Sizeof(.nfuncdata)+uintptr()*4))}func ( funcInfo, uint32, uintptr, *pcvalueCache) int32 {if >= .npcdata {return -1 } , := pcvalue(, pcdatastart(, ), , , true)return}func ( funcInfo, uint32, uintptr, *pcvalueCache, bool) int32 {if >= .npcdata {return -1 } , := pcvalue(, pcdatastart(, ), , , )return}// Like pcdatavalue, but also return the start PC of this PCData value.// It doesn't take a cache.func ( funcInfo, uint32, uintptr) (int32, uintptr) {if >= .npcdata {return -1, 0 }returnpcvalue(, pcdatastart(, ), , nil, true)}// funcdata returns a pointer to the ith funcdata for f.// funcdata should be kept in sync with cmd/link:writeFuncs.func ( funcInfo, uint8) unsafe.Pointer {if < 0 || >= .nfuncdata {returnnil } := .datap.gofunc// load gofunc address early so that we calculate during cache misses := uintptr(unsafe.Pointer(&.nfuncdata)) + unsafe.Sizeof(.nfuncdata) + uintptr(.npcdata)*4 + uintptr()*4 := *(*uint32)(unsafe.Pointer())// Return off == ^uint32(0) ? 0 : f.datap.gofunc + uintptr(off), but without branches. // The compiler calculates mask on most architectures using conditional assignment.varuintptrif == ^uint32(0) { = 1 } -- := + uintptr()returnunsafe.Pointer( & )}// step advances to the next pc, value pair in the encoded table.func ( []byte, *uintptr, *int32, bool) ( []byte, bool) {// For both uvdelta and pcdelta, the common case (~70%) // is that they are a single byte. If so, avoid calling readvarint. := uint32([0])if == 0 && ! {returnnil, false } := uint32(1)if &0x80 != 0 { , = readvarint() } * += int32(-( & 1) ^ ( >> 1)) = [:] := uint32([0]) = 1if &0x80 != 0 { , = readvarint() } = [:] * += uintptr( * sys.PCQuantum)return , true}// readvarint reads a varint from p.func ( []byte) ( uint32, uint32) {var , , uint32for { := [] ++ |= uint32(&0x7F) << ( & 31)if &0x80 == 0 {break } += 7 }return , }typestackmapstruct {nint32// number of bitmapsnbitint32// number of bits in each bitmapbytedata [1]byte// bitmaps, each starting on a byte boundary}//go:nowritebarrierfunc ( *stackmap, int32) bitvector {// Check this invariant only when stackDebug is on at all. // The invariant is already checked by many of stackmapdata's callers, // and disabling it by default allows stackmapdata to be inlined.ifstackDebug > 0 && ( < 0 || >= .n) {throw("stackmapdata: index out of range") }returnbitvector{.nbit, addb(&.bytedata[0], uintptr(*((.nbit+7)>>3)))}}
The pages are generated with Goldsv0.6.7. (GOOS=linux GOARCH=amd64)
Golds is a Go 101 project developed by Tapir Liu.
PR and bug reports are welcome and can be submitted to the issue list.
Please follow @Go100and1 (reachable from the left QR code) to get the latest news of Golds.