Source File
mfinal.go
Belonging Package
runtime
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Garbage collector: finalizers and block profiling.
package runtime
import (
)
// finblock is an array of finalizers to be executed. finblocks are
// arranged in a linked list for the finalizer queue.
//
// finblock is allocated from non-GC'd memory, so any heap pointers
// must be specially handled. GC currently assumes that the finalizer
// queue does not grow during marking (but it can shrink).
type finblock struct {
_ sys.NotInHeap
alllink *finblock
next *finblock
cnt uint32
_ int32
fin [(_FinBlockSize - 2*goarch.PtrSize - 2*4) / unsafe.Sizeof(finalizer{})]finalizer
}
var fingStatus atomic.Uint32
// finalizer goroutine status.
const (
fingUninitialized uint32 = iota
fingCreated uint32 = 1 << (iota - 1)
fingRunningFinalizer
fingWait
fingWake
)
var finlock mutex // protects the following variables
var fing *g // goroutine that runs finalizers
var finq *finblock // list of finalizers that are to be executed
var finc *finblock // cache of free blocks
var finptrmask [_FinBlockSize / goarch.PtrSize / 8]byte
var allfin *finblock // list of all blocks
// NOTE: Layout known to queuefinalizer.
type finalizer struct {
fn *funcval // function to call (may be a heap pointer)
arg unsafe.Pointer // ptr to object (may be a heap pointer)
nret uintptr // bytes of return values from fn
fint *_type // type of first argument of fn
ot *ptrtype // type of ptr to object (may be a heap pointer)
}
var finalizer1 = [...]byte{
// Each Finalizer is 5 words, ptr ptr INT ptr ptr (INT = uintptr here)
// Each byte describes 8 words.
// Need 8 Finalizers described by 5 bytes before pattern repeats:
// ptr ptr INT ptr ptr
// ptr ptr INT ptr ptr
// ptr ptr INT ptr ptr
// ptr ptr INT ptr ptr
// ptr ptr INT ptr ptr
// ptr ptr INT ptr ptr
// ptr ptr INT ptr ptr
// ptr ptr INT ptr ptr
// aka
//
// ptr ptr INT ptr ptr ptr ptr INT
// ptr ptr ptr ptr INT ptr ptr ptr
// ptr INT ptr ptr ptr ptr INT ptr
// ptr ptr ptr INT ptr ptr ptr ptr
// INT ptr ptr ptr ptr INT ptr ptr
//
// Assumptions about Finalizer layout checked below.
1<<0 | 1<<1 | 0<<2 | 1<<3 | 1<<4 | 1<<5 | 1<<6 | 0<<7,
1<<0 | 1<<1 | 1<<2 | 1<<3 | 0<<4 | 1<<5 | 1<<6 | 1<<7,
1<<0 | 0<<1 | 1<<2 | 1<<3 | 1<<4 | 1<<5 | 0<<6 | 1<<7,
1<<0 | 1<<1 | 1<<2 | 0<<3 | 1<<4 | 1<<5 | 1<<6 | 1<<7,
0<<0 | 1<<1 | 1<<2 | 1<<3 | 1<<4 | 0<<5 | 1<<6 | 1<<7,
}
// lockRankMayQueueFinalizer records the lock ranking effects of a
// function that may call queuefinalizer.
func () {
lockWithRankMayAcquire(&finlock, getLockRank(&finlock))
}
func ( unsafe.Pointer, *funcval, uintptr, *_type, *ptrtype) {
if gcphase != _GCoff {
// Currently we assume that the finalizer queue won't
// grow during marking so we don't have to rescan it
// during mark termination. If we ever need to lift
// this assumption, we can do it by adding the
// necessary barriers to queuefinalizer (which it may
// have automatically).
throw("queuefinalizer during GC")
}
lock(&finlock)
if finq == nil || finq.cnt == uint32(len(finq.fin)) {
if finc == nil {
finc = (*finblock)(persistentalloc(_FinBlockSize, 0, &memstats.gcMiscSys))
finc.alllink = allfin
allfin = finc
if finptrmask[0] == 0 {
// Build pointer mask for Finalizer array in block.
// Check assumptions made in finalizer1 array above.
if (unsafe.Sizeof(finalizer{}) != 5*goarch.PtrSize ||
unsafe.Offsetof(finalizer{}.fn) != 0 ||
unsafe.Offsetof(finalizer{}.arg) != goarch.PtrSize ||
unsafe.Offsetof(finalizer{}.nret) != 2*goarch.PtrSize ||
unsafe.Offsetof(finalizer{}.fint) != 3*goarch.PtrSize ||
unsafe.Offsetof(finalizer{}.ot) != 4*goarch.PtrSize) {
throw("finalizer out of sync")
}
for := range finptrmask {
finptrmask[] = finalizer1[%len(finalizer1)]
}
}
}
:= finc
finc = .next
.next = finq
finq =
}
:= &finq.fin[finq.cnt]
atomic.Xadd(&finq.cnt, +1) // Sync with markroots
.fn =
.nret =
.fint =
.ot =
.arg =
unlock(&finlock)
fingStatus.Or(fingWake)
}
//go:nowritebarrier
func ( func(*funcval, unsafe.Pointer, uintptr, *_type, *ptrtype)) {
for := allfin; != nil; = .alllink {
for := uint32(0); < .cnt; ++ {
:= &.fin[]
(.fn, .arg, .nret, .fint, .ot)
}
}
}
func () *g {
if := fingStatus.CompareAndSwap(fingCreated|fingWait|fingWake, fingCreated); {
return fing
}
return nil
}
func () {
// start the finalizer goroutine exactly once
if fingStatus.Load() == fingUninitialized && fingStatus.CompareAndSwap(fingUninitialized, fingCreated) {
go runfinq()
}
}
func ( *g, unsafe.Pointer) bool {
unlock((*mutex)())
// fingStatus should be modified after fing is put into a waiting state
// to avoid waking fing in running state, even if it is about to be parked.
fingStatus.Or(fingWait)
return true
}
// This is the goroutine that runs all of the finalizers.
func () {
var (
unsafe.Pointer
uintptr
int
)
:= getg()
lock(&finlock)
fing =
unlock(&finlock)
for {
lock(&finlock)
:= finq
finq = nil
if == nil {
gopark(finalizercommit, unsafe.Pointer(&finlock), waitReasonFinalizerWait, traceBlockSystemGoroutine, 1)
continue
}
= intArgRegs
unlock(&finlock)
if raceenabled {
racefingo()
}
for != nil {
for := .cnt; > 0; -- {
:= &.fin[-1]
var abi.RegArgs
// The args may be passed in registers or on stack. Even for
// the register case, we still need the spill slots.
// TODO: revisit if we remove spill slots.
//
// Unfortunately because we can have an arbitrary
// amount of returns and it would be complex to try and
// figure out how many of those can get passed in registers,
// just conservatively assume none of them do.
:= unsafe.Sizeof((any)(nil)) + .nret
if < {
// The frame does not contain pointers interesting for GC,
// all not yet finalized objects are stored in finq.
// If we do not mark it as FlagNoScan,
// the last finalized object is not collected.
= mallocgc(, nil, true)
=
}
if .fint == nil {
throw("missing type in runfinq")
}
:=
if > 0 {
= unsafe.Pointer(&.Ints)
} else {
// frame is effectively uninitialized
// memory. That means we have to clear
// it before writing to it to avoid
// confusing the write barrier.
*(*[2]uintptr)() = [2]uintptr{}
}
switch .fint.Kind_ & kindMask {
case kindPtr:
// direct use of pointer
*(*unsafe.Pointer)() = .arg
case kindInterface:
:= (*interfacetype)(unsafe.Pointer(.fint))
// set up with empty interface
(*eface)()._type = &.ot.Type
(*eface)().data = .arg
if len(.Methods) != 0 {
// convert to interface with methods
// this conversion is guaranteed to succeed - we checked in SetFinalizer
(*iface)().tab = assertE2I(, (*eface)()._type)
}
default:
throw("bad kind in runfinq")
}
fingStatus.Or(fingRunningFinalizer)
reflectcall(nil, unsafe.Pointer(.fn), , uint32(), uint32(), uint32(), &)
fingStatus.And(^fingRunningFinalizer)
// Drop finalizer queue heap references
// before hiding them from markroot.
// This also ensures these will be
// clear if we reuse the finalizer.
.fn = nil
.arg = nil
.ot = nil
atomic.Store(&.cnt, -1)
}
:= .next
lock(&finlock)
.next = finc
finc =
unlock(&finlock)
=
}
}
}
func ( unsafe.Pointer) bool {
// 0-length objects are okay.
if == unsafe.Pointer(&zerobase) {
return true
}
// Global initializers might be linker-allocated.
// var Foo = &Object{}
// func main() {
// runtime.SetFinalizer(Foo, nil)
// }
// The relevant segments are: noptrdata, data, bss, noptrbss.
// We cannot assume they are in any order or even contiguous,
// due to external linking.
for := &firstmoduledata; != nil; = .next {
if .noptrdata <= uintptr() && uintptr() < .enoptrdata ||
.data <= uintptr() && uintptr() < .edata ||
.bss <= uintptr() && uintptr() < .ebss ||
.noptrbss <= uintptr() && uintptr() < .enoptrbss {
return true
}
}
return false
}
// SetFinalizer sets the finalizer associated with obj to the provided
// finalizer function. When the garbage collector finds an unreachable block
// with an associated finalizer, it clears the association and runs
// finalizer(obj) in a separate goroutine. This makes obj reachable again,
// but now without an associated finalizer. Assuming that SetFinalizer
// is not called again, the next time the garbage collector sees
// that obj is unreachable, it will free obj.
//
// SetFinalizer(obj, nil) clears any finalizer associated with obj.
//
// The argument obj must be a pointer to an object allocated by calling
// new, by taking the address of a composite literal, or by taking the
// address of a local variable.
// The argument finalizer must be a function that takes a single argument
// to which obj's type can be assigned, and can have arbitrary ignored return
// values. If either of these is not true, SetFinalizer may abort the
// program.
//
// Finalizers are run in dependency order: if A points at B, both have
// finalizers, and they are otherwise unreachable, only the finalizer
// for A runs; once A is freed, the finalizer for B can run.
// If a cyclic structure includes a block with a finalizer, that
// cycle is not guaranteed to be garbage collected and the finalizer
// is not guaranteed to run, because there is no ordering that
// respects the dependencies.
//
// The finalizer is scheduled to run at some arbitrary time after the
// program can no longer reach the object to which obj points.
// There is no guarantee that finalizers will run before a program exits,
// so typically they are useful only for releasing non-memory resources
// associated with an object during a long-running program.
// For example, an os.File object could use a finalizer to close the
// associated operating system file descriptor when a program discards
// an os.File without calling Close, but it would be a mistake
// to depend on a finalizer to flush an in-memory I/O buffer such as a
// bufio.Writer, because the buffer would not be flushed at program exit.
//
// It is not guaranteed that a finalizer will run if the size of *obj is
// zero bytes, because it may share same address with other zero-size
// objects in memory. See https://go.dev/ref/spec#Size_and_alignment_guarantees.
//
// It is not guaranteed that a finalizer will run for objects allocated
// in initializers for package-level variables. Such objects may be
// linker-allocated, not heap-allocated.
//
// Note that because finalizers may execute arbitrarily far into the future
// after an object is no longer referenced, the runtime is allowed to perform
// a space-saving optimization that batches objects together in a single
// allocation slot. The finalizer for an unreferenced object in such an
// allocation may never run if it always exists in the same batch as a
// referenced object. Typically, this batching only happens for tiny
// (on the order of 16 bytes or less) and pointer-free objects.
//
// A finalizer may run as soon as an object becomes unreachable.
// In order to use finalizers correctly, the program must ensure that
// the object is reachable until it is no longer required.
// Objects stored in global variables, or that can be found by tracing
// pointers from a global variable, are reachable. For other objects,
// pass the object to a call of the KeepAlive function to mark the
// last point in the function where the object must be reachable.
//
// For example, if p points to a struct, such as os.File, that contains
// a file descriptor d, and p has a finalizer that closes that file
// descriptor, and if the last use of p in a function is a call to
// syscall.Write(p.d, buf, size), then p may be unreachable as soon as
// the program enters syscall.Write. The finalizer may run at that moment,
// closing p.d, causing syscall.Write to fail because it is writing to
// a closed file descriptor (or, worse, to an entirely different
// file descriptor opened by a different goroutine). To avoid this problem,
// call KeepAlive(p) after the call to syscall.Write.
//
// A single goroutine runs all finalizers for a program, sequentially.
// If a finalizer must run for a long time, it should do so by starting
// a new goroutine.
//
// In the terminology of the Go memory model, a call
// SetFinalizer(x, f) “synchronizes before” the finalization call f(x).
// However, there is no guarantee that KeepAlive(x) or any other use of x
// “synchronizes before” f(x), so in general a finalizer should use a mutex
// or other synchronization mechanism if it needs to access mutable state in x.
// For example, consider a finalizer that inspects a mutable field in x
// that is modified from time to time in the main program before x
// becomes unreachable and the finalizer is invoked.
// The modifications in the main program and the inspection in the finalizer
// need to use appropriate synchronization, such as mutexes or atomic updates,
// to avoid read-write races.
func ( any, any) {
if debug.sbrk != 0 {
// debug.sbrk never frees memory, so no finalizers run
// (and we don't have the data structures to record them).
return
}
:= efaceOf(&)
:= ._type
if == nil {
throw("runtime.SetFinalizer: first argument is nil")
}
if .Kind_&kindMask != kindPtr {
throw("runtime.SetFinalizer: first argument is " + toRType().string() + ", not pointer")
}
:= (*ptrtype)(unsafe.Pointer())
if .Elem == nil {
throw("nil elem type!")
}
if inUserArenaChunk(uintptr(.data)) {
// Arena-allocated objects are not eligible for finalizers.
throw("runtime.SetFinalizer: first argument was allocated into an arena")
}
// find the containing object
, , := findObject(uintptr(.data), 0, 0)
if == 0 {
if isGoPointerWithoutSpan(.data) {
return
}
throw("runtime.SetFinalizer: pointer not in allocated block")
}
if uintptr(.data) != {
// As an implementation detail we allow to set finalizers for an inner byte
// of an object if it could come from tiny alloc (see mallocgc for details).
if .Elem == nil || .Elem.PtrBytes != 0 || .Elem.Size_ >= maxTinySize {
throw("runtime.SetFinalizer: pointer not at beginning of allocated block")
}
}
:= efaceOf(&)
:= ._type
if == nil {
// switch to system stack and remove finalizer
systemstack(func() {
removefinalizer(.data)
})
return
}
if .Kind_&kindMask != kindFunc {
throw("runtime.SetFinalizer: second argument is " + toRType().string() + ", not a function")
}
:= (*functype)(unsafe.Pointer())
if .IsVariadic() {
throw("runtime.SetFinalizer: cannot pass " + toRType().string() + " to finalizer " + toRType().string() + " because dotdotdot")
}
if .InCount != 1 {
throw("runtime.SetFinalizer: cannot pass " + toRType().string() + " to finalizer " + toRType().string())
}
:= .InSlice()[0]
switch {
case == :
// ok - same type
goto
case .Kind_&kindMask == kindPtr:
if (.Uncommon() == nil || .Uncommon() == nil) && (*ptrtype)(unsafe.Pointer()).Elem == .Elem {
// ok - not same type, but both pointers,
// one or the other is unnamed, and same element type, so assignable.
goto
}
case .Kind_&kindMask == kindInterface:
:= (*interfacetype)(unsafe.Pointer())
if len(.Methods) == 0 {
// ok - satisfies empty interface
goto
}
if := assertE2I2(, *efaceOf(&)); .tab != nil {
goto
}
}
throw("runtime.SetFinalizer: cannot pass " + toRType().string() + " to finalizer " + toRType().string())
:
// compute size needed for return parameters
:= uintptr(0)
for , := range .OutSlice() {
= alignUp(, uintptr(.Align_)) + uintptr(.Size_)
}
= alignUp(, goarch.PtrSize)
// make sure we have a finalizer goroutine
createfing()
systemstack(func() {
if !addfinalizer(.data, (*funcval)(.data), , , ) {
throw("runtime.SetFinalizer: finalizer already set")
}
})
}
// Mark KeepAlive as noinline so that it is easily detectable as an intrinsic.
//
//go:noinline
// KeepAlive marks its argument as currently reachable.
// This ensures that the object is not freed, and its finalizer is not run,
// before the point in the program where KeepAlive is called.
//
// A very simplified example showing where KeepAlive is required:
//
// type File struct { d int }
// d, err := syscall.Open("/file/path", syscall.O_RDONLY, 0)
// // ... do something if err != nil ...
// p := &File{d}
// runtime.SetFinalizer(p, func(p *File) { syscall.Close(p.d) })
// var buf [10]byte
// n, err := syscall.Read(p.d, buf[:])
// // Ensure p is not finalized until Read returns.
// runtime.KeepAlive(p)
// // No more uses of p after this point.
//
// Without the KeepAlive call, the finalizer could run at the start of
// syscall.Read, closing the file descriptor before syscall.Read makes
// the actual system call.
//
// Note: KeepAlive should only be used to prevent finalizers from
// running prematurely. In particular, when used with unsafe.Pointer,
// the rules for valid uses of unsafe.Pointer still apply.
func ( any) {
// Introduce a use of x that the compiler can't eliminate.
// This makes sure x is alive on entry. We need x to be alive
// on entry for "defer runtime.KeepAlive(x)"; see issue 21402.
if cgoAlwaysFalse {
println()
}
}
The pages are generated with Golds v0.6.7. (GOOS=linux GOARCH=amd64) Golds is a Go 101 project developed by Tapir Liu. PR and bug reports are welcome and can be submitted to the issue list. Please follow @Go100and1 (reachable from the left QR code) to get the latest news of Golds. |