// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Go execution tracer.
// The tracer captures a wide range of execution events like goroutine
// creation/blocking/unblocking, syscall enter/exit/block, GC-related events,
// changes of heap size, processor start/stop, etc and writes them to a buffer
// in a compact form. A precise nanosecond-precision timestamp and a stack
// trace is captured for most events.
// See https://golang.org/s/go15trace for more info.

package runtime

import (
	
	
	
	
	
	
)

// Event types in the trace, args are given in square brackets.
const (
	traceEvNone              = 0  // unused
	traceEvBatch             = 1  // start of per-P batch of events [pid, timestamp]
	traceEvFrequency         = 2  // contains tracer timer frequency [frequency (ticks per second)]
	traceEvStack             = 3  // stack [stack id, number of PCs, array of {PC, func string ID, file string ID, line}]
	traceEvGomaxprocs        = 4  // current value of GOMAXPROCS [timestamp, GOMAXPROCS, stack id]
	traceEvProcStart         = 5  // start of P [timestamp, thread id]
	traceEvProcStop          = 6  // stop of P [timestamp]
	traceEvGCStart           = 7  // GC start [timestamp, seq, stack id]
	traceEvGCDone            = 8  // GC done [timestamp]
	traceEvSTWStart          = 9  // STW start [timestamp, kind]
	traceEvSTWDone           = 10 // STW done [timestamp]
	traceEvGCSweepStart      = 11 // GC sweep start [timestamp, stack id]
	traceEvGCSweepDone       = 12 // GC sweep done [timestamp, swept, reclaimed]
	traceEvGoCreate          = 13 // goroutine creation [timestamp, new goroutine id, new stack id, stack id]
	traceEvGoStart           = 14 // goroutine starts running [timestamp, goroutine id, seq]
	traceEvGoEnd             = 15 // goroutine ends [timestamp]
	traceEvGoStop            = 16 // goroutine stops (like in select{}) [timestamp, stack]
	traceEvGoSched           = 17 // goroutine calls Gosched [timestamp, stack]
	traceEvGoPreempt         = 18 // goroutine is preempted [timestamp, stack]
	traceEvGoSleep           = 19 // goroutine calls Sleep [timestamp, stack]
	traceEvGoBlock           = 20 // goroutine blocks [timestamp, stack]
	traceEvGoUnblock         = 21 // goroutine is unblocked [timestamp, goroutine id, seq, stack]
	traceEvGoBlockSend       = 22 // goroutine blocks on chan send [timestamp, stack]
	traceEvGoBlockRecv       = 23 // goroutine blocks on chan recv [timestamp, stack]
	traceEvGoBlockSelect     = 24 // goroutine blocks on select [timestamp, stack]
	traceEvGoBlockSync       = 25 // goroutine blocks on Mutex/RWMutex [timestamp, stack]
	traceEvGoBlockCond       = 26 // goroutine blocks on Cond [timestamp, stack]
	traceEvGoBlockNet        = 27 // goroutine blocks on network [timestamp, stack]
	traceEvGoSysCall         = 28 // syscall enter [timestamp, stack]
	traceEvGoSysExit         = 29 // syscall exit [timestamp, goroutine id, seq, real timestamp]
	traceEvGoSysBlock        = 30 // syscall blocks [timestamp]
	traceEvGoWaiting         = 31 // denotes that goroutine is blocked when tracing starts [timestamp, goroutine id]
	traceEvGoInSyscall       = 32 // denotes that goroutine is in syscall when tracing starts [timestamp, goroutine id]
	traceEvHeapAlloc         = 33 // gcController.heapLive change [timestamp, heap_alloc]
	traceEvHeapGoal          = 34 // gcController.heapGoal() (formerly next_gc) change [timestamp, heap goal in bytes]
	traceEvTimerGoroutine    = 35 // not currently used; previously denoted timer goroutine [timer goroutine id]
	traceEvFutileWakeup      = 36 // not currently used; denotes that the previous wakeup of this goroutine was futile [timestamp]
	traceEvString            = 37 // string dictionary entry [ID, length, string]
	traceEvGoStartLocal      = 38 // goroutine starts running on the same P as the last event [timestamp, goroutine id]
	traceEvGoUnblockLocal    = 39 // goroutine is unblocked on the same P as the last event [timestamp, goroutine id, stack]
	traceEvGoSysExitLocal    = 40 // syscall exit on the same P as the last event [timestamp, goroutine id, real timestamp]
	traceEvGoStartLabel      = 41 // goroutine starts running with label [timestamp, goroutine id, seq, label string id]
	traceEvGoBlockGC         = 42 // goroutine blocks on GC assist [timestamp, stack]
	traceEvGCMarkAssistStart = 43 // GC mark assist start [timestamp, stack]
	traceEvGCMarkAssistDone  = 44 // GC mark assist done [timestamp]
	traceEvUserTaskCreate    = 45 // trace.NewTask [timestamp, internal task id, internal parent task id, name string, stack]
	traceEvUserTaskEnd       = 46 // end of a task [timestamp, internal task id, stack]
	traceEvUserRegion        = 47 // trace.WithRegion [timestamp, internal task id, mode(0:start, 1:end), name string, stack]
	traceEvUserLog           = 48 // trace.Log [timestamp, internal task id, key string id, stack, value string]
	traceEvCPUSample         = 49 // CPU profiling sample [timestamp, real timestamp, real P id (-1 when absent), goroutine id, stack]
	traceEvCount             = 50
	// Byte is used but only 6 bits are available for event type.
	// The remaining 2 bits are used to specify the number of arguments.
	// That means, the max event type value is 63.
)

// traceBlockReason is an enumeration of reasons a goroutine might block.
// This is the interface the rest of the runtime uses to tell the
// tracer why a goroutine blocked. The tracer then propagates this information
// into the trace however it sees fit.
//
// Note that traceBlockReasons should not be compared, since reasons that are
// distinct by name may *not* be distinct by value.
type traceBlockReason uint8

// For maximal efficiency, just map the trace block reason directly to a trace
// event.
const (
	traceBlockGeneric         traceBlockReason = traceEvGoBlock
	traceBlockForever                          = traceEvGoStop
	traceBlockNet                              = traceEvGoBlockNet
	traceBlockSelect                           = traceEvGoBlockSelect
	traceBlockCondWait                         = traceEvGoBlockCond
	traceBlockSync                             = traceEvGoBlockSync
	traceBlockChanSend                         = traceEvGoBlockSend
	traceBlockChanRecv                         = traceEvGoBlockRecv
	traceBlockGCMarkAssist                     = traceEvGoBlockGC
	traceBlockGCSweep                          = traceEvGoBlock
	traceBlockSystemGoroutine                  = traceEvGoBlock
	traceBlockPreempted                        = traceEvGoBlock
	traceBlockDebugCall                        = traceEvGoBlock
	traceBlockUntilGCEnds                      = traceEvGoBlock
	traceBlockSleep                            = traceEvGoSleep
)

const (
	// Timestamps in trace are cputicks/traceTickDiv.
	// This makes absolute values of timestamp diffs smaller,
	// and so they are encoded in less number of bytes.
	// 64 on x86 is somewhat arbitrary (one tick is ~20ns on a 3GHz machine).
	// The suggested increment frequency for PowerPC's time base register is
	// 512 MHz according to Power ISA v2.07 section 6.2, so we use 16 on ppc64
	// and ppc64le.
	traceTimeDiv = 16 + 48*(goarch.Is386|goarch.IsAmd64)
	// Maximum number of PCs in a single stack trace.
	// Since events contain only stack id rather than whole stack trace,
	// we can allow quite large values here.
	traceStackSize = 128
	// Identifier of a fake P that is used when we trace without a real P.
	traceGlobProc = -1
	// Maximum number of bytes to encode uint64 in base-128.
	traceBytesPerNumber = 10
	// Shift of the number of arguments in the first event byte.
	traceArgCountShift = 6
)

// trace is global tracing context.
var trace struct {
	// trace.lock must only be acquired on the system stack where
	// stack splits cannot happen while it is held.
	lock          mutex       // protects the following members
	enabled       bool        // when set runtime traces events
	shutdown      bool        // set when we are waiting for trace reader to finish after setting enabled to false
	headerWritten bool        // whether ReadTrace has emitted trace header
	footerWritten bool        // whether ReadTrace has emitted trace footer
	shutdownSema  uint32      // used to wait for ReadTrace completion
	seqStart      uint64      // sequence number when tracing was started
	startTicks    int64       // cputicks when tracing was started
	endTicks      int64       // cputicks when tracing was stopped
	startNanotime int64       // nanotime when tracing was started
	endNanotime   int64       // nanotime when tracing was stopped
	startTime     traceTime   // traceClockNow when tracing started
	endTime       traceTime   // traceClockNow when tracing stopped
	seqGC         uint64      // GC start/done sequencer
	reading       traceBufPtr // buffer currently handed off to user
	empty         traceBufPtr // stack of empty buffers
	fullHead      traceBufPtr // queue of full buffers
	fullTail      traceBufPtr
	stackTab      traceStackTable // maps stack traces to unique ids
	// cpuLogRead accepts CPU profile samples from the signal handler where
	// they're generated. It uses a two-word header to hold the IDs of the P and
	// G (respectively) that were active at the time of the sample. Because
	// profBuf uses a record with all zeros in its header to indicate overflow,
	// we make sure to make the P field always non-zero: The ID of a real P will
	// start at bit 1, and bit 0 will be set. Samples that arrive while no P is
	// running (such as near syscalls) will set the first header field to 0b10.
	// This careful handling of the first header field allows us to store ID of
	// the active G directly in the second field, even though that will be 0
	// when sampling g0.
	cpuLogRead *profBuf
	// cpuLogBuf is a trace buffer to hold events corresponding to CPU profile
	// samples, which arrive out of band and not directly connected to a
	// specific P.
	cpuLogBuf traceBufPtr

	reader atomic.Pointer[g] // goroutine that called ReadTrace, or nil

	signalLock  atomic.Uint32 // protects use of the following member, only usable in signal handlers
	cpuLogWrite *profBuf      // copy of cpuLogRead for use in signal handlers, set without signalLock

	// Dictionary for traceEvString.
	//
	// TODO: central lock to access the map is not ideal.
	//   option: pre-assign ids to all user annotation region names and tags
	//   option: per-P cache
	//   option: sync.Map like data structure
	stringsLock mutex
	strings     map[string]uint64
	stringSeq   uint64

	// markWorkerLabels maps gcMarkWorkerMode to string ID.
	markWorkerLabels [len(gcMarkWorkerModeStrings)]uint64

	bufLock mutex       // protects buf
	buf     traceBufPtr // global trace buffer, used when running without a p
}

// gTraceState is per-G state for the tracer.
type gTraceState struct {
	sysExitTime        traceTime // timestamp when syscall has returned
	tracedSyscallEnter bool      // syscall or cgo was entered while trace was enabled or StartTrace has emitted EvGoInSyscall about this goroutine
	seq                uint64    // trace event sequencer
	lastP              puintptr  // last P emitted an event for this goroutine
}

// mTraceState is per-M state for the tracer.
type mTraceState struct {
	startingTrace  bool // this M is in TraceStart, potentially before traceEnabled is true
	tracedSTWStart bool // this M traced a STW start, so it should trace an end
}

// pTraceState is per-P state for the tracer.
type pTraceState struct {
	buf traceBufPtr

	// inSweep indicates the sweep events should be traced.
	// This is used to defer the sweep start event until a span
	// has actually been swept.
	inSweep bool

	// swept and reclaimed track the number of bytes swept and reclaimed
	// by sweeping in the current sweep loop (while inSweep was true).
	swept, reclaimed uintptr
}

// traceLockInit initializes global trace locks.
func () {
	lockInit(&trace.bufLock, lockRankTraceBuf)
	lockInit(&trace.stringsLock, lockRankTraceStrings)
	lockInit(&trace.lock, lockRankTrace)
	lockInit(&trace.stackTab.lock, lockRankTraceStackTab)
}

// traceBufHeader is per-P tracing buffer.
type traceBufHeader struct {
	link     traceBufPtr             // in trace.empty/full
	lastTime traceTime               // when we wrote the last event
	pos      int                     // next write offset in arr
	stk      [traceStackSize]uintptr // scratch buffer for traceback
}

// traceBuf is per-P tracing buffer.
type traceBuf struct {
	_ sys.NotInHeap
	traceBufHeader
	arr [64<<10 - unsafe.Sizeof(traceBufHeader{})]byte // underlying buffer for traceBufHeader.buf
}

// traceBufPtr is a *traceBuf that is not traced by the garbage
// collector and doesn't have write barriers. traceBufs are not
// allocated from the GC'd heap, so this is safe, and are often
// manipulated in contexts where write barriers are not allowed, so
// this is necessary.
//
// TODO: Since traceBuf is now embedded runtime/internal/sys.NotInHeap, this isn't necessary.
type traceBufPtr uintptr

func ( traceBufPtr) () *traceBuf   { return (*traceBuf)(unsafe.Pointer()) }
func ( *traceBufPtr) ( *traceBuf) { * = traceBufPtr(unsafe.Pointer()) }
func ( *traceBuf) traceBufPtr {
	return traceBufPtr(unsafe.Pointer())
}

// traceEnabled returns true if the trace is currently enabled.
//
//go:nosplit
func () bool {
	return trace.enabled
}

// traceShuttingDown returns true if the trace is currently shutting down.
//
//go:nosplit
func () bool {
	return trace.shutdown
}

// StartTrace enables tracing for the current process.
// While tracing, the data will be buffered and available via ReadTrace.
// StartTrace returns an error if tracing is already enabled.
// Most clients should use the runtime/trace package or the testing package's
// -test.trace flag instead of calling StartTrace directly.
func () error {
	// Stop the world so that we can take a consistent snapshot
	// of all goroutines at the beginning of the trace.
	// Do not stop the world during GC so we ensure we always see
	// a consistent view of GC-related events (e.g. a start is always
	// paired with an end).
	stopTheWorldGC(stwStartTrace)

	// Prevent sysmon from running any code that could generate events.
	lock(&sched.sysmonlock)

	// We are in stop-the-world, but syscalls can finish and write to trace concurrently.
	// Exitsyscall could check trace.enabled long before and then suddenly wake up
	// and decide to write to trace at a random point in time.
	// However, such syscall will use the global trace.buf buffer, because we've
	// acquired all p's by doing stop-the-world. So this protects us from such races.
	lock(&trace.bufLock)

	if trace.enabled || trace.shutdown {
		unlock(&trace.bufLock)
		unlock(&sched.sysmonlock)
		startTheWorldGC()
		return errorString("tracing is already enabled")
	}

	// Can't set trace.enabled yet. While the world is stopped, exitsyscall could
	// already emit a delayed event (see exitTicks in exitsyscall) if we set trace.enabled here.
	// That would lead to an inconsistent trace:
	// - either GoSysExit appears before EvGoInSyscall,
	// - or GoSysExit appears for a goroutine for which we don't emit EvGoInSyscall below.
	// To instruct traceEvent that it must not ignore events below, we set trace.startingTrace.
	// trace.enabled is set afterwards once we have emitted all preliminary events.
	 := getg().m
	.trace.startingTrace = true

	// Obtain current stack ID to use in all traceEvGoCreate events below.
	 := make([]uintptr, traceStackSize)
	 := traceStackID(, , 2)

	 := newProfBuf(2, profBufWordCount, profBufTagCount) // after the timestamp, header is [pp.id, gp.goid]
	trace.cpuLogRead = 

	// We must not acquire trace.signalLock outside of a signal handler: a
	// profiling signal may arrive at any time and try to acquire it, leading to
	// deadlock. Because we can't use that lock to protect updates to
	// trace.cpuLogWrite (only use of the structure it references), reads and
	// writes of the pointer must be atomic. (And although this field is never
	// the sole pointer to the profBuf value, it's best to allow a write barrier
	// here.)
	atomicstorep(unsafe.Pointer(&trace.cpuLogWrite), unsafe.Pointer())

	// World is stopped, no need to lock.
	forEachGRace(func( *g) {
		 := readgstatus()
		if  != _Gdead {
			.trace.seq = 0
			.trace.lastP = getg().m.p
			// +PCQuantum because traceFrameForPC expects return PCs and subtracts PCQuantum.
			 := trace.stackTab.put([]uintptr{logicalStackSentinel, startPCforTrace(.startpc) + sys.PCQuantum})
			traceEvent(traceEvGoCreate, -1, .goid, uint64(), )
		}
		if  == _Gwaiting {
			// traceEvGoWaiting is implied to have seq=1.
			.trace.seq++
			traceEvent(traceEvGoWaiting, -1, .goid)
		}
		if  == _Gsyscall {
			.trace.seq++
			.trace.tracedSyscallEnter = true
			traceEvent(traceEvGoInSyscall, -1, .goid)
		} else if  == _Gdead && .m != nil && .m.isextra {
			// Trigger two trace events for the dead g in the extra m,
			// since the next event of the g will be traceEvGoSysExit in exitsyscall,
			// while calling from C thread to Go.
			.trace.seq = 0
			.trace.lastP = getg().m.p
			// +PCQuantum because traceFrameForPC expects return PCs and subtracts PCQuantum.
			 := trace.stackTab.put([]uintptr{logicalStackSentinel, startPCforTrace(0) + sys.PCQuantum}) // no start pc
			traceEvent(traceEvGoCreate, -1, .goid, uint64(), )
			.trace.seq++
			.trace.tracedSyscallEnter = true
			traceEvent(traceEvGoInSyscall, -1, .goid)
		} else {
			// We need to explicitly clear the flag. A previous trace might have ended with a goroutine
			// not emitting a GoSysExit and clearing the flag, leaving it in a stale state. Clearing
			// it here makes it unambiguous to any goroutine exiting a syscall racing with us that
			// no EvGoInSyscall event was emitted for it. (It's not racy to set this flag here, because
			// it'll only get checked when the goroutine runs again, which will be after the world starts
			// again.)
			.trace.tracedSyscallEnter = false
		}
	})
	traceProcStart()
	traceGoStart()
	// Note: startTicks needs to be set after we emit traceEvGoInSyscall events.
	// If we do it the other way around, it is possible that exitsyscall will
	// query sysExitTime after startTicks but before traceEvGoInSyscall timestamp.
	// It will lead to a false conclusion that cputicks is broken.
	trace.startTime = traceClockNow()
	trace.startTicks = cputicks()
	trace.startNanotime = nanotime()
	trace.headerWritten = false
	trace.footerWritten = false

	// string to id mapping
	//  0 : reserved for an empty string
	//  remaining: other strings registered by traceString
	trace.stringSeq = 0
	trace.strings = make(map[string]uint64)

	trace.seqGC = 0
	.trace.startingTrace = false
	trace.enabled = true

	// Register runtime goroutine labels.
	, ,  := traceAcquireBuffer()
	for ,  := range gcMarkWorkerModeStrings[:] {
		trace.markWorkerLabels[],  = traceString(, , )
	}
	traceReleaseBuffer(, )

	unlock(&trace.bufLock)

	unlock(&sched.sysmonlock)

	// Record the current state of HeapGoal to avoid information loss in trace.
	traceHeapGoal()

	startTheWorldGC()
	return nil
}

// StopTrace stops tracing, if it was previously enabled.
// StopTrace only returns after all the reads for the trace have completed.
func () {
	// Stop the world so that we can collect the trace buffers from all p's below,
	// and also to avoid races with traceEvent.
	stopTheWorldGC(stwStopTrace)

	// See the comment in StartTrace.
	lock(&sched.sysmonlock)

	// See the comment in StartTrace.
	lock(&trace.bufLock)

	if !trace.enabled {
		unlock(&trace.bufLock)
		unlock(&sched.sysmonlock)
		startTheWorldGC()
		return
	}

	traceGoSched()

	atomicstorep(unsafe.Pointer(&trace.cpuLogWrite), nil)
	trace.cpuLogRead.close()
	traceReadCPU()

	// Loop over all allocated Ps because dead Ps may still have
	// trace buffers.
	for ,  := range allp[:cap(allp)] {
		 := .trace.buf
		if  != 0 {
			traceFullQueue()
			.trace.buf = 0
		}
	}
	if trace.buf != 0 {
		 := trace.buf
		trace.buf = 0
		if .ptr().pos != 0 {
			traceFullQueue()
		}
	}
	if trace.cpuLogBuf != 0 {
		 := trace.cpuLogBuf
		trace.cpuLogBuf = 0
		if .ptr().pos != 0 {
			traceFullQueue()
		}
	}

	// Wait for startNanotime != endNanotime. On Windows the default interval between
	// system clock ticks is typically between 1 and 15 milliseconds, which may not
	// have passed since the trace started. Without nanotime moving forward, trace
	// tooling has no way of identifying how much real time each cputicks time deltas
	// represent.
	for {
		trace.endTime = traceClockNow()
		trace.endTicks = cputicks()
		trace.endNanotime = nanotime()

		if trace.endNanotime != trace.startNanotime || faketime != 0 {
			break
		}
		osyield()
	}

	trace.enabled = false
	trace.shutdown = true
	unlock(&trace.bufLock)

	unlock(&sched.sysmonlock)

	startTheWorldGC()

	// The world is started but we've set trace.shutdown, so new tracing can't start.
	// Wait for the trace reader to flush pending buffers and stop.
	semacquire(&trace.shutdownSema)
	if raceenabled {
		raceacquire(unsafe.Pointer(&trace.shutdownSema))
	}

	systemstack(func() {
		// The lock protects us from races with StartTrace/StopTrace because they do stop-the-world.
		lock(&trace.lock)
		for ,  := range allp[:cap(allp)] {
			if .trace.buf != 0 {
				throw("trace: non-empty trace buffer in proc")
			}
		}
		if trace.buf != 0 {
			throw("trace: non-empty global trace buffer")
		}
		if trace.fullHead != 0 || trace.fullTail != 0 {
			throw("trace: non-empty full trace buffer")
		}
		if trace.reading != 0 || trace.reader.Load() != nil {
			throw("trace: reading after shutdown")
		}
		for trace.empty != 0 {
			 := trace.empty
			trace.empty = .ptr().link
			sysFree(unsafe.Pointer(), unsafe.Sizeof(*.ptr()), &memstats.other_sys)
		}
		trace.strings = nil
		trace.shutdown = false
		trace.cpuLogRead = nil
		unlock(&trace.lock)
	})
}

// ReadTrace returns the next chunk of binary tracing data, blocking until data
// is available. If tracing is turned off and all the data accumulated while it
// was on has been returned, ReadTrace returns nil. The caller must copy the
// returned data before calling ReadTrace again.
// ReadTrace must be called from one goroutine at a time.
func () []byte {
:
	var  []byte
	var  bool
	systemstack(func() {
		,  = readTrace0()
	})
	if  {
		gopark(func( *g,  unsafe.Pointer) bool {
			if !trace.reader.CompareAndSwapNoWB(nil, ) {
				// We're racing with another reader.
				// Wake up and handle this case.
				return false
			}

			if  := traceReader();  ==  {
				// New data arrived between unlocking
				// and the CAS and we won the wake-up
				// race, so wake up directly.
				return false
			} else if  != nil {
				printlock()
				println("runtime: got trace reader", , .goid)
				throw("unexpected trace reader")
			}

			return true
		}, nil, waitReasonTraceReaderBlocked, traceBlockSystemGoroutine, 2)
		goto 
	}

	return 
}

// readTrace0 is ReadTrace's continuation on g0. This must run on the
// system stack because it acquires trace.lock.
//
//go:systemstack
func () ( []byte,  bool) {
	if raceenabled {
		// g0 doesn't have a race context. Borrow the user G's.
		if getg().racectx != 0 {
			throw("expected racectx == 0")
		}
		getg().racectx = getg().m.curg.racectx
		// (This defer should get open-coded, which is safe on
		// the system stack.)
		defer func() { getg().racectx = 0 }()
	}

	// Optimistically look for CPU profile samples. This may write new stack
	// records, and may write new tracing buffers. This must be done with the
	// trace lock not held. footerWritten and shutdown are safe to access
	// here. They are only mutated by this goroutine or during a STW.
	if !trace.footerWritten && !trace.shutdown {
		traceReadCPU()
	}

	// This function must not allocate while holding trace.lock:
	// allocation can call heap allocate, which will try to emit a trace
	// event while holding heap lock.
	lock(&trace.lock)

	if trace.reader.Load() != nil {
		// More than one goroutine reads trace. This is bad.
		// But we rather do not crash the program because of tracing,
		// because tracing can be enabled at runtime on prod servers.
		unlock(&trace.lock)
		println("runtime: ReadTrace called from multiple goroutines simultaneously")
		return nil, false
	}
	// Recycle the old buffer.
	if  := trace.reading;  != 0 {
		.ptr().link = trace.empty
		trace.empty = 
		trace.reading = 0
	}
	// Write trace header.
	if !trace.headerWritten {
		trace.headerWritten = true
		unlock(&trace.lock)
		return []byte("go 1.21 trace\x00\x00\x00"), false
	}
	// Wait for new data.
	if trace.fullHead == 0 && !trace.shutdown {
		// We don't simply use a note because the scheduler
		// executes this goroutine directly when it wakes up
		// (also a note would consume an M).
		unlock(&trace.lock)
		return nil, true
	}
:
	assertLockHeld(&trace.lock)
	// Write a buffer.
	if trace.fullHead != 0 {
		 := traceFullDequeue()
		trace.reading = 
		unlock(&trace.lock)
		return .ptr().arr[:.ptr().pos], false
	}

	// Write footer with timer frequency.
	if !trace.footerWritten {
		trace.footerWritten = true
		 := (float64(trace.endTicks-trace.startTicks) / traceTimeDiv) / (float64(trace.endNanotime-trace.startNanotime) / 1e9)
		if  <= 0 {
			throw("trace: ReadTrace got invalid frequency")
		}
		unlock(&trace.lock)

		// Write frequency event.
		 := traceFlush(0, 0)
		 := .ptr()
		.byte(traceEvFrequency | 0<<traceArgCountShift)
		.varint(uint64())

		// Dump stack table.
		// This will emit a bunch of full buffers, we will pick them up
		// on the next iteration.
		 = trace.stackTab.dump()

		// Flush final buffer.
		lock(&trace.lock)
		traceFullQueue()
		goto  // trace.lock should be held at newFull
	}
	// Done.
	if trace.shutdown {
		unlock(&trace.lock)
		if raceenabled {
			// Model synchronization on trace.shutdownSema, which race
			// detector does not see. This is required to avoid false
			// race reports on writer passed to trace.Start.
			racerelease(unsafe.Pointer(&trace.shutdownSema))
		}
		// trace.enabled is already reset, so can call traceable functions.
		semrelease(&trace.shutdownSema)
		return nil, false
	}
	// Also bad, but see the comment above.
	unlock(&trace.lock)
	println("runtime: spurious wakeup of trace reader")
	return nil, false
}

// traceReader returns the trace reader that should be woken up, if any.
// Callers should first check that trace.enabled or trace.shutdown is set.
//
// This must run on the system stack because it acquires trace.lock.
//
//go:systemstack
func () *g {
	// Optimistic check first
	if traceReaderAvailable() == nil {
		return nil
	}
	lock(&trace.lock)
	 := traceReaderAvailable()
	if  == nil || !trace.reader.CompareAndSwapNoWB(, nil) {
		unlock(&trace.lock)
		return nil
	}
	unlock(&trace.lock)
	return 
}

// traceReaderAvailable returns the trace reader if it is not currently
// scheduled and should be. Callers should first check that trace.enabled
// or trace.shutdown is set.
func () *g {
	if trace.fullHead != 0 || trace.shutdown {
		return trace.reader.Load()
	}
	return nil
}

// traceProcFree frees trace buffer associated with pp.
//
// This must run on the system stack because it acquires trace.lock.
//
//go:systemstack
func ( *p) {
	 := .trace.buf
	.trace.buf = 0
	if  == 0 {
		return
	}
	lock(&trace.lock)
	traceFullQueue()
	unlock(&trace.lock)
}

// traceFullQueue queues buf into queue of full buffers.
func ( traceBufPtr) {
	.ptr().link = 0
	if trace.fullHead == 0 {
		trace.fullHead = 
	} else {
		trace.fullTail.ptr().link = 
	}
	trace.fullTail = 
}

// traceFullDequeue dequeues from queue of full buffers.
func () traceBufPtr {
	 := trace.fullHead
	if  == 0 {
		return 0
	}
	trace.fullHead = .ptr().link
	if trace.fullHead == 0 {
		trace.fullTail = 0
	}
	.ptr().link = 0
	return 
}

// traceEvent writes a single event to trace buffer, flushing the buffer if necessary.
// ev is event type.
// If skip > 0, write current stack id as the last argument (skipping skip top frames).
// If skip = 0, this event type should contain a stack, but we don't want
// to collect and remember it for this particular call.
func ( byte,  int,  ...uint64) {
	, ,  := traceAcquireBuffer()
	// Double-check trace.enabled now that we've done m.locks++ and acquired bufLock.
	// This protects from races between traceEvent and StartTrace/StopTrace.

	// The caller checked that trace.enabled == true, but trace.enabled might have been
	// turned off between the check and now. Check again. traceLockBuffer did mp.locks++,
	// StopTrace does stopTheWorld, and stopTheWorld waits for mp.locks to go back to zero,
	// so if we see trace.enabled == true now, we know it's true for the rest of the function.
	// Exitsyscall can run even during stopTheWorld. The race with StartTrace/StopTrace
	// during tracing in exitsyscall is resolved by locking trace.bufLock in traceLockBuffer.
	//
	// Note trace_userTaskCreate runs the same check.
	if !trace.enabled && !.trace.startingTrace {
		traceReleaseBuffer(, )
		return
	}

	if  > 0 {
		if getg() == .curg {
			++ // +1 because stack is captured in traceEventLocked.
		}
	}
	traceEventLocked(0, , , , , 0, , ...)
	traceReleaseBuffer(, )
}

// traceEventLocked writes a single event of type ev to the trace buffer bufp,
// flushing the buffer if necessary. pid is the id of the current P, or
// traceGlobProc if we're tracing without a real P.
//
// Preemption is disabled, and if running without a real P the global tracing
// buffer is locked.
//
// Events types that do not include a stack set skip to -1. Event types that
// include a stack may explicitly reference a stackID from the trace.stackTab
// (obtained by an earlier call to traceStackID). Without an explicit stackID,
// this function will automatically capture the stack of the goroutine currently
// running on mp, skipping skip top frames or, if skip is 0, writing out an
// empty stack record.
//
// It records the event's args to the traceBuf, and also makes an effort to
// reserve extraBytes bytes of additional space immediately following the event,
// in the same traceBuf.
func ( int,  *m,  int32,  *traceBufPtr,  byte,  uint32,  int,  ...uint64) {
	 := .ptr()
	// TODO: test on non-zero extraBytes param.
	 := 2 + 5*traceBytesPerNumber +  // event type, length, sequence, timestamp, stack id and two add params
	if  == nil || len(.arr)-.pos <  {
		systemstack(func() {
			 = traceFlush(traceBufPtrOf(), ).ptr()
		})
		.set()
	}

	 := traceClockNow()
	if  <= .lastTime {
		 = .lastTime + 1
	}
	 := uint64( - .lastTime)
	.lastTime = 
	 := byte(len())
	if  != 0 ||  >= 0 {
		++
	}
	// We have only 2 bits for number of arguments.
	// If number is >= 3, then the event type is followed by event length in bytes.
	if  > 3 {
		 = 3
	}
	 := .pos
	.byte( | <<traceArgCountShift)
	var  *byte
	if  == 3 {
		// Reserve the byte for length assuming that length < 128.
		.varint(0)
		 = &.arr[.pos-1]
	}
	.varint()
	for ,  := range  {
		.varint()
	}
	if  != 0 {
		.varint(uint64())
	} else if  == 0 {
		.varint(0)
	} else if  > 0 {
		.varint(traceStackID(, .stk[:], ))
	}
	 := .pos - 
	if  >  {
		throw("invalid length of trace event")
	}
	if  != nil {
		// Fill in actual length.
		* = byte( - 2)
	}
}

// traceCPUSample writes a CPU profile sample stack to the execution tracer's
// profiling buffer. It is called from a signal handler, so is limited in what
// it can do.
func ( *g,  *p,  []uintptr) {
	if !trace.enabled {
		// Tracing is usually turned off; don't spend time acquiring the signal
		// lock unless it's active.
		return
	}

	// Match the clock used in traceEventLocked
	 := traceClockNow()
	// The "header" here is the ID of the P that was running the profiled code,
	// followed by the ID of the goroutine. (For normal CPU profiling, it's
	// usually the number of samples with the given stack.) Near syscalls, pp
	// may be nil. Reporting goid of 0 is fine for either g0 or a nil gp.
	var  [2]uint64
	if  != nil {
		// Overflow records in profBuf have all header values set to zero. Make
		// sure that real headers have at least one bit set.
		[0] = uint64(.id)<<1 | 0b1
	} else {
		[0] = 0b10
	}
	if  != nil {
		[1] = .goid
	}

	// Allow only one writer at a time
	for !trace.signalLock.CompareAndSwap(0, 1) {
		// TODO: Is it safe to osyield here? https://go.dev/issue/52672
		osyield()
	}

	if  := (*profBuf)(atomic.Loadp(unsafe.Pointer(&trace.cpuLogWrite)));  != nil {
		// Note: we don't pass a tag pointer here (how should profiling tags
		// interact with the execution tracer?), but if we did we'd need to be
		// careful about write barriers. See the long comment in profBuf.write.
		.write(nil, int64(), [:], )
	}

	trace.signalLock.Store(0)
}

func () {
	 := &trace.cpuLogBuf

	for {
		, ,  := trace.cpuLogRead.read(profBufNonBlocking)
		if len() == 0 {
			break
		}
		for len() > 0 {
			if len() < 4 || [0] > uint64(len()) {
				break // truncated profile
			}
			if [0] < 4 ||  != nil && len() < 1 {
				break // malformed profile
			}
			if len() < 1 {
				break // mismatched profile records and tags
			}
			 := [1]
			 := [2] >> 1
			if  := ([2] & 0b1) != 0; ! {
				 = ^uint64(0)
			}
			 := [3]
			 := [4:[0]]
			 := len() == 1 && [2] == 0 && [3] == 0
			 = [[0]:]
			// No support here for reporting goroutine tags at the moment; if
			// that information is to be part of the execution trace, we'd
			// probably want to see when the tags are applied and when they
			// change, instead of only seeing them when we get a CPU sample.
			 = [1:]

			if  {
				// Looks like an overflow record from the profBuf. Not much to
				// do here, we only want to report full records.
				//
				// TODO: should we start a goroutine to drain the profBuf,
				// rather than relying on a high-enough volume of tracing events
				// to keep ReadTrace busy? https://go.dev/issue/52674
				continue
			}

			 := .ptr()
			if  == nil {
				systemstack(func() {
					* = traceFlush(*, 0)
				})
				 = .ptr()
			}
			 := 1
			.stk[0] = logicalStackSentinel
			for ;  < len(.stk) && -1 < len(); ++ {
				.stk[] = uintptr([-1])
			}
			 := trace.stackTab.put(.stk[:])

			traceEventLocked(0, nil, 0, , traceEvCPUSample, , 1, uint64(), , )
		}
	}
}

// logicalStackSentinel is a sentinel value at pcBuf[0] signifying that
// pcBuf[1:] holds a logical stack requiring no further processing. Any other
// value at pcBuf[0] represents a skip value to apply to the physical stack in
// pcBuf[1:] after inline expansion.
const logicalStackSentinel = ^uintptr(0)

// traceStackID captures a stack trace into pcBuf, registers it in the trace
// stack table, and returns its unique ID. pcBuf should have a length equal to
// traceStackSize. skip controls the number of leaf frames to omit in order to
// hide tracer internals from stack traces, see CL 5523.
func ( *m,  []uintptr,  int) uint64 {
	 := getg()
	 := .curg
	 := 1
	if tracefpunwindoff() || .hasCgoOnStack() {
		// Slow path: Unwind using default unwinder. Used when frame pointer
		// unwinding is unavailable or disabled (tracefpunwindoff), or might
		// produce incomplete results or crashes (hasCgoOnStack). Note that no
		// cgo callback related crashes have been observed yet. The main
		// motivation is to take advantage of a potentially registered cgo
		// symbolizer.
		[0] = logicalStackSentinel
		if  ==  {
			 += callers(+1, [1:])
		} else if  != nil {
			 += gcallers(, , [1:])
		}
	} else {
		// Fast path: Unwind using frame pointers.
		[0] = uintptr()
		if  ==  {
			 += fpTracebackPCs(unsafe.Pointer(getfp()), [1:])
		} else if  != nil {
			// We're called on the g0 stack through mcall(fn) or systemstack(fn). To
			// behave like gcallers above, we start unwinding from sched.bp, which
			// points to the caller frame of the leaf frame on g's stack. The return
			// address of the leaf frame is stored in sched.pc, which we manually
			// capture here.
			[1] = .sched.pc
			 += 1 + fpTracebackPCs(unsafe.Pointer(.sched.bp), [2:])
		}
	}
	if  > 0 {
		-- // skip runtime.goexit
	}
	if  > 0 && .goid == 1 {
		-- // skip runtime.main
	}
	 := trace.stackTab.put([:])
	return uint64()
}

// tracefpunwindoff returns true if frame pointer unwinding for the tracer is
// disabled via GODEBUG or not supported by the architecture.
// TODO(#60254): support frame pointer unwinding on plan9/amd64.
func () bool {
	return debug.tracefpunwindoff != 0 || (goarch.ArchFamily != goarch.AMD64 && goarch.ArchFamily != goarch.ARM64) || goos.IsPlan9 == 1
}

// fpTracebackPCs populates pcBuf with the return addresses for each frame and
// returns the number of PCs written to pcBuf. The returned PCs correspond to
// "physical frames" rather than "logical frames"; that is if A is inlined into
// B, this will return a PC for only B.
func ( unsafe.Pointer,  []uintptr) ( int) {
	for  = 0;  < len() &&  != nil; ++ {
		// return addr sits one word above the frame pointer
		[] = *(*uintptr)(unsafe.Pointer(uintptr() + goarch.PtrSize))
		// follow the frame pointer to the next one
		 = unsafe.Pointer(*(*uintptr)())
	}
	return 
}

// traceAcquireBuffer returns trace buffer to use and, if necessary, locks it.
func () ( *m,  int32,  *traceBufPtr) {
	// Any time we acquire a buffer, we may end up flushing it,
	// but flushes are rare. Record the lock edge even if it
	// doesn't happen this time.
	lockRankMayTraceFlush()

	 = acquirem()
	if  := .p.ptr();  != nil {
		return , .id, &.trace.buf
	}
	lock(&trace.bufLock)
	return , traceGlobProc, &trace.buf
}

// traceReleaseBuffer releases a buffer previously acquired with traceAcquireBuffer.
func ( *m,  int32) {
	if  == traceGlobProc {
		unlock(&trace.bufLock)
	}
	releasem()
}

// lockRankMayTraceFlush records the lock ranking effects of a
// potential call to traceFlush.
func () {
	lockWithRankMayAcquire(&trace.lock, getLockRank(&trace.lock))
}

// traceFlush puts buf onto stack of full buffers and returns an empty buffer.
//
// This must run on the system stack because it acquires trace.lock.
//
//go:systemstack
func ( traceBufPtr,  int32) traceBufPtr {
	lock(&trace.lock)
	if  != 0 {
		traceFullQueue()
	}
	if trace.empty != 0 {
		 = trace.empty
		trace.empty = .ptr().link
	} else {
		 = traceBufPtr(sysAlloc(unsafe.Sizeof(traceBuf{}), &memstats.other_sys))
		if  == 0 {
			throw("trace: out of memory")
		}
	}
	 := .ptr()
	.link.set(nil)
	.pos = 0

	// initialize the buffer for a new batch
	 := traceClockNow()
	if  <= .lastTime {
		 = .lastTime + 1
	}
	.lastTime = 
	.byte(traceEvBatch | 1<<traceArgCountShift)
	.varint(uint64())
	.varint(uint64())

	unlock(&trace.lock)
	return 
}

// traceString adds a string to the trace.strings and returns the id.
func ( *traceBufPtr,  int32,  string) (uint64, *traceBufPtr) {
	if  == "" {
		return 0, 
	}

	lock(&trace.stringsLock)
	if raceenabled {
		// raceacquire is necessary because the map access
		// below is race annotated.
		raceacquire(unsafe.Pointer(&trace.stringsLock))
	}

	if ,  := trace.strings[];  {
		if raceenabled {
			racerelease(unsafe.Pointer(&trace.stringsLock))
		}
		unlock(&trace.stringsLock)

		return , 
	}

	trace.stringSeq++
	 := trace.stringSeq
	trace.strings[] = 

	if raceenabled {
		racerelease(unsafe.Pointer(&trace.stringsLock))
	}
	unlock(&trace.stringsLock)

	// memory allocation in above may trigger tracing and
	// cause *bufp changes. Following code now works with *bufp,
	// so there must be no memory allocation or any activities
	// that causes tracing after this point.

	 := .ptr()
	 := 1 + 2*traceBytesPerNumber + len()
	if  == nil || len(.arr)-.pos <  {
		systemstack(func() {
			 = traceFlush(traceBufPtrOf(), ).ptr()
			.set()
		})
	}
	.byte(traceEvString)
	.varint()

	// double-check the string and the length can fit.
	// Otherwise, truncate the string.
	 := len()
	if  := len(.arr) - .pos;  < +traceBytesPerNumber {
		 = 
	}

	.varint(uint64())
	.pos += copy(.arr[.pos:], [:])

	.set()
	return , 
}

// varint appends v to buf in little-endian-base-128 encoding.
func ( *traceBuf) ( uint64) {
	 := .pos
	for ;  >= 0x80;  >>= 7 {
		.arr[] = 0x80 | byte()
		++
	}
	.arr[] = byte()
	++
	.pos = 
}

// varintAt writes varint v at byte position pos in buf. This always
// consumes traceBytesPerNumber bytes. This is intended for when the
// caller needs to reserve space for a varint but can't populate it
// until later.
func ( *traceBuf) ( int,  uint64) {
	for  := 0;  < traceBytesPerNumber; ++ {
		if  < traceBytesPerNumber-1 {
			.arr[] = 0x80 | byte()
		} else {
			.arr[] = byte()
		}
		 >>= 7
		++
	}
}

// byte appends v to buf.
func ( *traceBuf) ( byte) {
	.arr[.pos] = 
	.pos++
}

// traceStackTable maps stack traces (arrays of PC's) to unique uint32 ids.
// It is lock-free for reading.
type traceStackTable struct {
	lock mutex // Must be acquired on the system stack
	seq  uint32
	mem  traceAlloc
	tab  [1 << 13]traceStackPtr
}

// traceStack is a single stack in traceStackTable.
type traceStack struct {
	link traceStackPtr
	hash uintptr
	id   uint32
	n    int
	stk  [0]uintptr // real type [n]uintptr
}

type traceStackPtr uintptr

func ( traceStackPtr) () *traceStack { return (*traceStack)(unsafe.Pointer()) }

// stack returns slice of PCs.
func ( *traceStack) () []uintptr {
	return (*[traceStackSize]uintptr)(unsafe.Pointer(&.stk))[:.n]
}

// put returns a unique id for the stack trace pcs and caches it in the table,
// if it sees the trace for the first time.
func ( *traceStackTable) ( []uintptr) uint32 {
	if len() == 0 {
		return 0
	}
	 := memhash(unsafe.Pointer(&[0]), 0, uintptr(len())*unsafe.Sizeof([0]))
	// First, search the hashtable w/o the mutex.
	if  := .find(, );  != 0 {
		return 
	}
	// Now, double check under the mutex.
	// Switch to the system stack so we can acquire tab.lock
	var  uint32
	systemstack(func() {
		lock(&.lock)
		if  = .find(, );  != 0 {
			unlock(&.lock)
			return
		}
		// Create new record.
		.seq++
		 := .newStack(len())
		.hash = 
		.id = .seq
		 = .id
		.n = len()
		 := .stack()
		copy(, )
		 := int( % uintptr(len(.tab)))
		.link = .tab[]
		atomicstorep(unsafe.Pointer(&.tab[]), unsafe.Pointer())
		unlock(&.lock)
	})
	return 
}

// find checks if the stack trace pcs is already present in the table.
func ( *traceStackTable) ( []uintptr,  uintptr) uint32 {
	 := int( % uintptr(len(.tab)))
:
	for  := .tab[].ptr();  != nil;  = .link.ptr() {
		if .hash ==  && .n == len() {
			for ,  := range .stack() {
				if  != [] {
					continue 
				}
			}
			return .id
		}
	}
	return 0
}

// newStack allocates a new stack of size n.
func ( *traceStackTable) ( int) *traceStack {
	return (*traceStack)(.mem.alloc(unsafe.Sizeof(traceStack{}) + uintptr()*goarch.PtrSize))
}

// traceFrames returns the frames corresponding to pcs. It may
// allocate and may emit trace events.
func ( traceBufPtr,  []uintptr) ([]traceFrame, traceBufPtr) {
	 := make([]traceFrame, 0, len())
	 := CallersFrames()
	for {
		var  traceFrame
		,  := .Next()
		,  = traceFrameForPC(, 0, )
		 = append(, )
		if ! {
			return , 
		}
	}
}

// dump writes all previously cached stacks to trace buffers,
// releases all memory and resets state.
//
// This must run on the system stack because it calls traceFlush.
//
//go:systemstack
func ( *traceStackTable) ( traceBufPtr) traceBufPtr {
	for  := range .tab {
		 := .tab[].ptr()
		for ;  != nil;  = .link.ptr() {
			var  []traceFrame
			,  = traceFrames(, fpunwindExpand(.stack()))

			// Estimate the size of this record. This
			// bound is pretty loose, but avoids counting
			// lots of varint sizes.
			 := 1 + traceBytesPerNumber + (2+4*len())*traceBytesPerNumber
			// Make sure we have enough buffer space.
			if  := .ptr(); len(.arr)-.pos <  {
				 = traceFlush(, 0)
			}

			// Emit header, with space reserved for length.
			 := .ptr()
			.byte(traceEvStack | 3<<traceArgCountShift)
			 := .pos
			.pos += traceBytesPerNumber

			// Emit body.
			 := .pos
			.varint(uint64(.id))
			.varint(uint64(len()))
			for ,  := range  {
				.varint(uint64(.PC))
				.varint(.funcID)
				.varint(.fileID)
				.varint(.line)
			}

			// Fill in size header.
			.varintAt(, uint64(.pos-))
		}
	}

	.mem.drop()
	* = traceStackTable{}
	lockInit(&((*).lock), lockRankTraceStackTab)

	return 
}

// fpunwindExpand checks if pcBuf contains logical frames (which include inlined
// frames) or physical frames (produced by frame pointer unwinding) using a
// sentinel value in pcBuf[0]. Logical frames are simply returned without the
// sentinel. Physical frames are turned into logical frames via inline unwinding
// and by applying the skip value that's stored in pcBuf[0].
func ( []uintptr) []uintptr {
	if len() > 0 && [0] == logicalStackSentinel {
		// pcBuf contains logical rather than inlined frames, skip has already been
		// applied, just return it without the sentinel value in pcBuf[0].
		return [1:]
	}

	var (
		      pcvalueCache
		 = abi.FuncIDNormal
		   = make([]uintptr, 0, traceStackSize)
		       = [0]
		// skipOrAdd skips or appends retPC to newPCBuf and returns true if more
		// pcs can be added.
		 = func( uintptr) bool {
			if  > 0 {
				--
			} else {
				 = append(, )
			}
			return len() < cap()
		}
	)

:
	for ,  := range [1:] {
		 :=  - 1
		 := findfunc()
		if !.valid() {
			// There is no funcInfo if callPC belongs to a C function. In this case
			// we still keep the pc, but don't attempt to expand inlined frames.
			if  := (); ! {
				break 
			}
			continue
		}

		,  := newInlineUnwinder(, , &)
		for ; .valid();  = .next() {
			 := .srcFunc()
			if .funcID == abi.FuncIDWrapper && elideWrapperCalling() {
				// ignore wrappers
			} else if  := (.pc + 1); ! {
				break 
			}
			 = .funcID
		}
	}
	return 
}

type traceFrame struct {
	PC     uintptr
	funcID uint64
	fileID uint64
	line   uint64
}

// traceFrameForPC records the frame information.
// It may allocate memory.
func ( traceBufPtr,  int32,  Frame) (traceFrame, traceBufPtr) {
	 := &
	var  traceFrame
	.PC = .PC

	 := .Function
	const  = 1 << 10
	if len() >  {
		 = [len()-:]
	}
	.funcID,  = traceString(, , )
	.line = uint64(.Line)
	 := .File
	if len() >  {
		 = [len()-:]
	}
	.fileID,  = traceString(, , )
	return , (*)
}

// traceAlloc is a non-thread-safe region allocator.
// It holds a linked list of traceAllocBlock.
type traceAlloc struct {
	head traceAllocBlockPtr
	off  uintptr
}

// traceAllocBlock is a block in traceAlloc.
//
// traceAllocBlock is allocated from non-GC'd memory, so it must not
// contain heap pointers. Writes to pointers to traceAllocBlocks do
// not need write barriers.
type traceAllocBlock struct {
	_    sys.NotInHeap
	next traceAllocBlockPtr
	data [64<<10 - goarch.PtrSize]byte
}

// TODO: Since traceAllocBlock is now embedded runtime/internal/sys.NotInHeap, this isn't necessary.
type traceAllocBlockPtr uintptr

func ( traceAllocBlockPtr) () *traceAllocBlock   { return (*traceAllocBlock)(unsafe.Pointer()) }
func ( *traceAllocBlockPtr) ( *traceAllocBlock) { * = traceAllocBlockPtr(unsafe.Pointer()) }

// alloc allocates n-byte block.
func ( *traceAlloc) ( uintptr) unsafe.Pointer {
	 = alignUp(, goarch.PtrSize)
	if .head == 0 || .off+ > uintptr(len(.head.ptr().data)) {
		if  > uintptr(len(.head.ptr().data)) {
			throw("trace: alloc too large")
		}
		 := (*traceAllocBlock)(sysAlloc(unsafe.Sizeof(traceAllocBlock{}), &memstats.other_sys))
		if  == nil {
			throw("trace: out of memory")
		}
		.next.set(.head.ptr())
		.head.set()
		.off = 0
	}
	 := &.head.ptr().data[.off]
	.off += 
	return unsafe.Pointer()
}

// drop frees all previously allocated memory and resets the allocator.
func ( *traceAlloc) () {
	for .head != 0 {
		 := .head.ptr()
		.head.set(.next.ptr())
		sysFree(unsafe.Pointer(), unsafe.Sizeof(traceAllocBlock{}), &memstats.other_sys)
	}
}

// The following functions write specific events to trace.

func ( int32) {
	traceEvent(traceEvGomaxprocs, 1, uint64())
}

func () {
	traceEvent(traceEvProcStart, -1, uint64(getg().m.id))
}

func ( *p) {
	// Sysmon and stopTheWorld can stop Ps blocked in syscalls,
	// to handle this we temporary employ the P.
	 := acquirem()
	 := .p
	.p.set()
	traceEvent(traceEvProcStop, -1)
	.p = 
	releasem()
}

func () {
	traceEvent(traceEvGCStart, 3, trace.seqGC)
	trace.seqGC++
}

func () {
	traceEvent(traceEvGCDone, -1)
}

func ( stwReason) {
	// Don't trace if this STW is for trace start/stop, since traceEnabled
	// switches during a STW.
	if  == stwStartTrace ||  == stwStopTrace {
		return
	}
	getg().m.trace.tracedSTWStart = true
	traceEvent(traceEvSTWStart, -1, uint64())
}

func () {
	 := getg().m
	if !.trace.tracedSTWStart {
		return
	}
	.trace.tracedSTWStart = false
	traceEvent(traceEvSTWDone, -1)
}

// traceGCSweepStart prepares to trace a sweep loop. This does not
// emit any events until traceGCSweepSpan is called.
//
// traceGCSweepStart must be paired with traceGCSweepDone and there
// must be no preemption points between these two calls.
func () {
	// Delay the actual GCSweepStart event until the first span
	// sweep. If we don't sweep anything, don't emit any events.
	 := getg().m.p.ptr()
	if .trace.inSweep {
		throw("double traceGCSweepStart")
	}
	.trace.inSweep, .trace.swept, .trace.reclaimed = true, 0, 0
}

// traceGCSweepSpan traces the sweep of a single page.
//
// This may be called outside a traceGCSweepStart/traceGCSweepDone
// pair; however, it will not emit any trace events in this case.
func ( uintptr) {
	 := getg().m.p.ptr()
	if .trace.inSweep {
		if .trace.swept == 0 {
			traceEvent(traceEvGCSweepStart, 1)
		}
		.trace.swept += 
	}
}

func () {
	 := getg().m.p.ptr()
	if !.trace.inSweep {
		throw("missing traceGCSweepStart")
	}
	if .trace.swept != 0 {
		traceEvent(traceEvGCSweepDone, -1, uint64(.trace.swept), uint64(.trace.reclaimed))
	}
	.trace.inSweep = false
}

func () {
	traceEvent(traceEvGCMarkAssistStart, 1)
}

func () {
	traceEvent(traceEvGCMarkAssistDone, -1)
}

func ( *g,  uintptr) {
	.trace.seq = 0
	.trace.lastP = getg().m.p
	// +PCQuantum because traceFrameForPC expects return PCs and subtracts PCQuantum.
	 := trace.stackTab.put([]uintptr{logicalStackSentinel, startPCforTrace() + sys.PCQuantum})
	traceEvent(traceEvGoCreate, 2, .goid, uint64())
}

func () {
	 := getg().m.curg
	 := .m.p
	.trace.seq++
	if .ptr().gcMarkWorkerMode != gcMarkWorkerNotWorker {
		traceEvent(traceEvGoStartLabel, -1, .goid, .trace.seq, trace.markWorkerLabels[.ptr().gcMarkWorkerMode])
	} else if .trace.lastP ==  {
		traceEvent(traceEvGoStartLocal, -1, .goid)
	} else {
		.trace.lastP = 
		traceEvent(traceEvGoStart, -1, .goid, .trace.seq)
	}
}

func () {
	traceEvent(traceEvGoEnd, -1)
}

func () {
	 := getg()
	.trace.lastP = .m.p
	traceEvent(traceEvGoSched, 1)
}

func () {
	 := getg()
	.trace.lastP = .m.p
	traceEvent(traceEvGoPreempt, 1)
}

func ( traceBlockReason,  int) {
	// Convert the block reason directly to a trace event type.
	// See traceBlockReason for more information.
	traceEvent(byte(), )
}

func ( *g,  int) {
	 := getg().m.p
	.trace.seq++
	if .trace.lastP ==  {
		traceEvent(traceEvGoUnblockLocal, , .goid)
	} else {
		.trace.lastP = 
		traceEvent(traceEvGoUnblock, , .goid, .trace.seq)
	}
}

func () {
	var  int
	switch {
	case tracefpunwindoff():
		// Unwind by skipping 1 frame relative to gp.syscallsp which is captured 3
		// frames above this frame. For frame pointer unwinding we produce the same
		// results by hard coding the number of frames in between our caller and the
		// actual syscall, see cases below.
		// TODO(felixge): Implement gp.syscallbp to avoid this workaround?
		 = 1
	case GOOS == "solaris" || GOOS == "illumos":
		// These platforms don't use a libc_read_trampoline.
		 = 3
	default:
		// Skip the extra trampoline frame used on most systems.
		 = 4
	}
	getg().m.curg.trace.tracedSyscallEnter = true
	traceEvent(traceEvGoSysCall, )
}

func () {
	 := getg().m.curg
	if !.trace.tracedSyscallEnter {
		// There was no syscall entry traced for us at all, so there's definitely
		// no EvGoSysBlock or EvGoInSyscall before us, which EvGoSysExit requires.
		return
	}
	.trace.tracedSyscallEnter = false
	 := .trace.sysExitTime
	if  != 0 &&  < trace.startTime {
		// There is a race between the code that initializes sysExitTimes
		// (in exitsyscall, which runs without a P, and therefore is not
		// stopped with the rest of the world) and the code that initializes
		// a new trace. The recorded sysExitTime must therefore be treated
		// as "best effort". If they are valid for this trace, then great,
		// use them for greater accuracy. But if they're not valid for this
		// trace, assume that the trace was started after the actual syscall
		// exit (but before we actually managed to start the goroutine,
		// aka right now), and assign a fresh time stamp to keep the log consistent.
		 = 0
	}
	.trace.sysExitTime = 0
	.trace.seq++
	.trace.lastP = .m.p
	traceEvent(traceEvGoSysExit, -1, .goid, .trace.seq, uint64())
}

func ( *p) {
	// Sysmon and stopTheWorld can declare syscalls running on remote Ps as blocked,
	// to handle this we temporary employ the P.
	 := acquirem()
	 := .p
	.p.set()
	traceEvent(traceEvGoSysBlock, -1)
	.p = 
	releasem()
}

func ( uint64) {
	traceEvent(traceEvHeapAlloc, -1, )
}

func () {
	 := gcController.heapGoal()
	if  == ^uint64(0) {
		// Heap-based triggering is disabled.
		traceEvent(traceEvHeapGoal, -1, 0)
	} else {
		traceEvent(traceEvHeapGoal, -1, )
	}
}

// To access runtime functions from runtime/trace.
// See runtime/trace/annotation.go

//go:linkname trace_userTaskCreate runtime/trace.userTaskCreate
func (,  uint64,  string) {
	if !trace.enabled {
		return
	}

	// Same as in traceEvent.
	, ,  := traceAcquireBuffer()
	if !trace.enabled && !.trace.startingTrace {
		traceReleaseBuffer(, )
		return
	}

	,  := traceString(, , )
	traceEventLocked(0, , , , traceEvUserTaskCreate, 0, 3, , , )
	traceReleaseBuffer(, )
}

//go:linkname trace_userTaskEnd runtime/trace.userTaskEnd
func ( uint64) {
	traceEvent(traceEvUserTaskEnd, 2, )
}

//go:linkname trace_userRegion runtime/trace.userRegion
func (,  uint64,  string) {
	if !trace.enabled {
		return
	}

	, ,  := traceAcquireBuffer()
	if !trace.enabled && !.trace.startingTrace {
		traceReleaseBuffer(, )
		return
	}

	,  := traceString(, , )
	traceEventLocked(0, , , , traceEvUserRegion, 0, 3, , , )
	traceReleaseBuffer(, )
}

//go:linkname trace_userLog runtime/trace.userLog
func ( uint64, ,  string) {
	if !trace.enabled {
		return
	}

	, ,  := traceAcquireBuffer()
	if !trace.enabled && !.trace.startingTrace {
		traceReleaseBuffer(, )
		return
	}

	,  := traceString(, , )

	// The log message is recorded after all of the normal trace event
	// arguments, including the task, category, and stack IDs. We must ask
	// traceEventLocked to reserve extra space for the length of the message
	// and the message itself.
	 := traceBytesPerNumber + len()
	traceEventLocked(, , , , traceEvUserLog, 0, 3, , )
	 := .ptr()

	// double-check the message and its length can fit.
	// Otherwise, truncate the message.
	 := len()
	if  := len(.arr) - .pos;  < +traceBytesPerNumber {
		 = 
	}
	.varint(uint64())
	.pos += copy(.arr[.pos:], [:])

	traceReleaseBuffer(, )
}

// the start PC of a goroutine for tracing purposes. If pc is a wrapper,
// it returns the PC of the wrapped function. Otherwise it returns pc.
func ( uintptr) uintptr {
	 := findfunc()
	if !.valid() {
		return  // may happen for locked g in extra M since its pc is 0.
	}
	 := funcdata(, abi.FUNCDATA_WrapInfo)
	if  == nil {
		return  // not a wrapper
	}
	return .datap.textAddr(*(*uint32)())
}

// traceOneNewExtraM registers the fact that a new extra M was created with
// the tracer. This matters if the M (which has an attached G) is used while
// the trace is still active because if it is, we need the fact that it exists
// to show up in the final trace.
func ( *g) {
	// Trigger two trace events for the locked g in the extra m,
	// since the next event of the g will be traceEvGoSysExit in exitsyscall,
	// while calling from C thread to Go.
	traceGoCreate(, 0) // no start pc
	.trace.seq++
	traceEvent(traceEvGoInSyscall, -1, .goid)
}

// traceTime represents a timestamp for the trace.
type traceTime uint64

// traceClockNow returns a monotonic timestamp. The clock this function gets
// the timestamp from is specific to tracing, and shouldn't be mixed with other
// clock sources.
//
// nosplit because it's called from exitsyscall, which is nosplit.
//
//go:nosplit
func () traceTime {
	return traceTime(cputicks() / traceTimeDiv)
}